ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  pitonnlem1 GIF version

Theorem pitonnlem1 7013
Description: Lemma for pitonn 7016. Two ways to write the number one. (Contributed by Jim Kingdon, 24-Apr-2020.)
Assertion
Ref Expression
pitonnlem1 ⟨[⟨(⟨{𝑙𝑙 <Q [⟨1𝑜, 1𝑜⟩] ~Q }, {𝑢 ∣ [⟨1𝑜, 1𝑜⟩] ~Q <Q 𝑢}⟩ +P 1P), 1P⟩] ~R , 0R⟩ = 1
Distinct variable group:   𝑢,𝑙

Proof of Theorem pitonnlem1
StepHypRef Expression
1 df-1 6989 . 2 1 = ⟨1R, 0R
2 df-1r 6909 . . . 4 1R = [⟨(1P +P 1P), 1P⟩] ~R
3 df-i1p 6657 . . . . . . . 8 1P = ⟨{𝑙𝑙 <Q 1Q}, {𝑢 ∣ 1Q <Q 𝑢}⟩
4 df-1nqqs 6541 . . . . . . . . . . 11 1Q = [⟨1𝑜, 1𝑜⟩] ~Q
54breq2i 3793 . . . . . . . . . 10 (𝑙 <Q 1Q𝑙 <Q [⟨1𝑜, 1𝑜⟩] ~Q )
65abbii 2194 . . . . . . . . 9 {𝑙𝑙 <Q 1Q} = {𝑙𝑙 <Q [⟨1𝑜, 1𝑜⟩] ~Q }
74breq1i 3792 . . . . . . . . . 10 (1Q <Q 𝑢 ↔ [⟨1𝑜, 1𝑜⟩] ~Q <Q 𝑢)
87abbii 2194 . . . . . . . . 9 {𝑢 ∣ 1Q <Q 𝑢} = {𝑢 ∣ [⟨1𝑜, 1𝑜⟩] ~Q <Q 𝑢}
96, 8opeq12i 3575 . . . . . . . 8 ⟨{𝑙𝑙 <Q 1Q}, {𝑢 ∣ 1Q <Q 𝑢}⟩ = ⟨{𝑙𝑙 <Q [⟨1𝑜, 1𝑜⟩] ~Q }, {𝑢 ∣ [⟨1𝑜, 1𝑜⟩] ~Q <Q 𝑢}⟩
103, 9eqtri 2101 . . . . . . 7 1P = ⟨{𝑙𝑙 <Q [⟨1𝑜, 1𝑜⟩] ~Q }, {𝑢 ∣ [⟨1𝑜, 1𝑜⟩] ~Q <Q 𝑢}⟩
1110oveq1i 5542 . . . . . 6 (1P +P 1P) = (⟨{𝑙𝑙 <Q [⟨1𝑜, 1𝑜⟩] ~Q }, {𝑢 ∣ [⟨1𝑜, 1𝑜⟩] ~Q <Q 𝑢}⟩ +P 1P)
1211opeq1i 3573 . . . . 5 ⟨(1P +P 1P), 1P⟩ = ⟨(⟨{𝑙𝑙 <Q [⟨1𝑜, 1𝑜⟩] ~Q }, {𝑢 ∣ [⟨1𝑜, 1𝑜⟩] ~Q <Q 𝑢}⟩ +P 1P), 1P
13 eceq1 6164 . . . . 5 (⟨(1P +P 1P), 1P⟩ = ⟨(⟨{𝑙𝑙 <Q [⟨1𝑜, 1𝑜⟩] ~Q }, {𝑢 ∣ [⟨1𝑜, 1𝑜⟩] ~Q <Q 𝑢}⟩ +P 1P), 1P⟩ → [⟨(1P +P 1P), 1P⟩] ~R = [⟨(⟨{𝑙𝑙 <Q [⟨1𝑜, 1𝑜⟩] ~Q }, {𝑢 ∣ [⟨1𝑜, 1𝑜⟩] ~Q <Q 𝑢}⟩ +P 1P), 1P⟩] ~R )
1412, 13ax-mp 7 . . . 4 [⟨(1P +P 1P), 1P⟩] ~R = [⟨(⟨{𝑙𝑙 <Q [⟨1𝑜, 1𝑜⟩] ~Q }, {𝑢 ∣ [⟨1𝑜, 1𝑜⟩] ~Q <Q 𝑢}⟩ +P 1P), 1P⟩] ~R
152, 14eqtri 2101 . . 3 1R = [⟨(⟨{𝑙𝑙 <Q [⟨1𝑜, 1𝑜⟩] ~Q }, {𝑢 ∣ [⟨1𝑜, 1𝑜⟩] ~Q <Q 𝑢}⟩ +P 1P), 1P⟩] ~R
1615opeq1i 3573 . 2 ⟨1R, 0R⟩ = ⟨[⟨(⟨{𝑙𝑙 <Q [⟨1𝑜, 1𝑜⟩] ~Q }, {𝑢 ∣ [⟨1𝑜, 1𝑜⟩] ~Q <Q 𝑢}⟩ +P 1P), 1P⟩] ~R , 0R
171, 16eqtr2i 2102 1 ⟨[⟨(⟨{𝑙𝑙 <Q [⟨1𝑜, 1𝑜⟩] ~Q }, {𝑢 ∣ [⟨1𝑜, 1𝑜⟩] ~Q <Q 𝑢}⟩ +P 1P), 1P⟩] ~R , 0R⟩ = 1
Colors of variables: wff set class
Syntax hints:   = wceq 1284  {cab 2067  cop 3401   class class class wbr 3785  (class class class)co 5532  1𝑜c1o 6017  [cec 6127   ~Q ceq 6469  1Qc1q 6471   <Q cltq 6475  1Pc1p 6482   +P cpp 6483   ~R cer 6486  0Rc0r 6488  1Rc1r 6489  1c1 6982
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 104  ax-ia2 105  ax-ia3 106  ax-io 662  ax-5 1376  ax-7 1377  ax-gen 1378  ax-ie1 1422  ax-ie2 1423  ax-8 1435  ax-10 1436  ax-11 1437  ax-i12 1438  ax-bndl 1439  ax-4 1440  ax-17 1459  ax-i9 1463  ax-ial 1467  ax-i5r 1468  ax-ext 2063
This theorem depends on definitions:  df-bi 115  df-3an 921  df-tru 1287  df-nf 1390  df-sb 1686  df-clab 2068  df-cleq 2074  df-clel 2077  df-nfc 2208  df-rex 2354  df-v 2603  df-un 2977  df-in 2979  df-ss 2986  df-sn 3404  df-pr 3405  df-op 3407  df-uni 3602  df-br 3786  df-opab 3840  df-xp 4369  df-cnv 4371  df-dm 4373  df-rn 4374  df-res 4375  df-ima 4376  df-iota 4887  df-fv 4930  df-ov 5535  df-ec 6131  df-1nqqs 6541  df-i1p 6657  df-1r 6909  df-1 6989
This theorem is referenced by:  pitonn  7016
  Copyright terms: Public domain W3C validator