ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  pitonn GIF version

Theorem pitonn 7016
Description: Mapping from N to . (Contributed by Jim Kingdon, 22-Apr-2020.)
Assertion
Ref Expression
pitonn (𝑁N → ⟨[⟨(⟨{𝑙𝑙 <Q [⟨𝑁, 1𝑜⟩] ~Q }, {𝑢 ∣ [⟨𝑁, 1𝑜⟩] ~Q <Q 𝑢}⟩ +P 1P), 1P⟩] ~R , 0R⟩ ∈ {𝑥 ∣ (1 ∈ 𝑥 ∧ ∀𝑦𝑥 (𝑦 + 1) ∈ 𝑥)})
Distinct variable groups:   𝑁,𝑙,𝑢   𝑦,𝑙,𝑢   𝑥,𝑦
Allowed substitution hints:   𝑁(𝑥,𝑦)

Proof of Theorem pitonn
Dummy variables 𝑤 𝑧 𝑘 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 opeq1 3570 . . . . . . . . . . . . . . 15 (𝑤 = 1𝑜 → ⟨𝑤, 1𝑜⟩ = ⟨1𝑜, 1𝑜⟩)
21eceq1d 6165 . . . . . . . . . . . . . 14 (𝑤 = 1𝑜 → [⟨𝑤, 1𝑜⟩] ~Q = [⟨1𝑜, 1𝑜⟩] ~Q )
32breq2d 3797 . . . . . . . . . . . . 13 (𝑤 = 1𝑜 → (𝑙 <Q [⟨𝑤, 1𝑜⟩] ~Q𝑙 <Q [⟨1𝑜, 1𝑜⟩] ~Q ))
43abbidv 2196 . . . . . . . . . . . 12 (𝑤 = 1𝑜 → {𝑙𝑙 <Q [⟨𝑤, 1𝑜⟩] ~Q } = {𝑙𝑙 <Q [⟨1𝑜, 1𝑜⟩] ~Q })
52breq1d 3795 . . . . . . . . . . . . 13 (𝑤 = 1𝑜 → ([⟨𝑤, 1𝑜⟩] ~Q <Q 𝑢 ↔ [⟨1𝑜, 1𝑜⟩] ~Q <Q 𝑢))
65abbidv 2196 . . . . . . . . . . . 12 (𝑤 = 1𝑜 → {𝑢 ∣ [⟨𝑤, 1𝑜⟩] ~Q <Q 𝑢} = {𝑢 ∣ [⟨1𝑜, 1𝑜⟩] ~Q <Q 𝑢})
74, 6opeq12d 3578 . . . . . . . . . . 11 (𝑤 = 1𝑜 → ⟨{𝑙𝑙 <Q [⟨𝑤, 1𝑜⟩] ~Q }, {𝑢 ∣ [⟨𝑤, 1𝑜⟩] ~Q <Q 𝑢}⟩ = ⟨{𝑙𝑙 <Q [⟨1𝑜, 1𝑜⟩] ~Q }, {𝑢 ∣ [⟨1𝑜, 1𝑜⟩] ~Q <Q 𝑢}⟩)
87oveq1d 5547 . . . . . . . . . 10 (𝑤 = 1𝑜 → (⟨{𝑙𝑙 <Q [⟨𝑤, 1𝑜⟩] ~Q }, {𝑢 ∣ [⟨𝑤, 1𝑜⟩] ~Q <Q 𝑢}⟩ +P 1P) = (⟨{𝑙𝑙 <Q [⟨1𝑜, 1𝑜⟩] ~Q }, {𝑢 ∣ [⟨1𝑜, 1𝑜⟩] ~Q <Q 𝑢}⟩ +P 1P))
98opeq1d 3576 . . . . . . . . 9 (𝑤 = 1𝑜 → ⟨(⟨{𝑙𝑙 <Q [⟨𝑤, 1𝑜⟩] ~Q }, {𝑢 ∣ [⟨𝑤, 1𝑜⟩] ~Q <Q 𝑢}⟩ +P 1P), 1P⟩ = ⟨(⟨{𝑙𝑙 <Q [⟨1𝑜, 1𝑜⟩] ~Q }, {𝑢 ∣ [⟨1𝑜, 1𝑜⟩] ~Q <Q 𝑢}⟩ +P 1P), 1P⟩)
109eceq1d 6165 . . . . . . . 8 (𝑤 = 1𝑜 → [⟨(⟨{𝑙𝑙 <Q [⟨𝑤, 1𝑜⟩] ~Q }, {𝑢 ∣ [⟨𝑤, 1𝑜⟩] ~Q <Q 𝑢}⟩ +P 1P), 1P⟩] ~R = [⟨(⟨{𝑙𝑙 <Q [⟨1𝑜, 1𝑜⟩] ~Q }, {𝑢 ∣ [⟨1𝑜, 1𝑜⟩] ~Q <Q 𝑢}⟩ +P 1P), 1P⟩] ~R )
1110opeq1d 3576 . . . . . . 7 (𝑤 = 1𝑜 → ⟨[⟨(⟨{𝑙𝑙 <Q [⟨𝑤, 1𝑜⟩] ~Q }, {𝑢 ∣ [⟨𝑤, 1𝑜⟩] ~Q <Q 𝑢}⟩ +P 1P), 1P⟩] ~R , 0R⟩ = ⟨[⟨(⟨{𝑙𝑙 <Q [⟨1𝑜, 1𝑜⟩] ~Q }, {𝑢 ∣ [⟨1𝑜, 1𝑜⟩] ~Q <Q 𝑢}⟩ +P 1P), 1P⟩] ~R , 0R⟩)
1211eleq1d 2147 . . . . . 6 (𝑤 = 1𝑜 → (⟨[⟨(⟨{𝑙𝑙 <Q [⟨𝑤, 1𝑜⟩] ~Q }, {𝑢 ∣ [⟨𝑤, 1𝑜⟩] ~Q <Q 𝑢}⟩ +P 1P), 1P⟩] ~R , 0R⟩ ∈ 𝑧 ↔ ⟨[⟨(⟨{𝑙𝑙 <Q [⟨1𝑜, 1𝑜⟩] ~Q }, {𝑢 ∣ [⟨1𝑜, 1𝑜⟩] ~Q <Q 𝑢}⟩ +P 1P), 1P⟩] ~R , 0R⟩ ∈ 𝑧))
1312imbi2d 228 . . . . 5 (𝑤 = 1𝑜 → (((1 ∈ 𝑧 ∧ ∀𝑦𝑧 (𝑦 + 1) ∈ 𝑧) → ⟨[⟨(⟨{𝑙𝑙 <Q [⟨𝑤, 1𝑜⟩] ~Q }, {𝑢 ∣ [⟨𝑤, 1𝑜⟩] ~Q <Q 𝑢}⟩ +P 1P), 1P⟩] ~R , 0R⟩ ∈ 𝑧) ↔ ((1 ∈ 𝑧 ∧ ∀𝑦𝑧 (𝑦 + 1) ∈ 𝑧) → ⟨[⟨(⟨{𝑙𝑙 <Q [⟨1𝑜, 1𝑜⟩] ~Q }, {𝑢 ∣ [⟨1𝑜, 1𝑜⟩] ~Q <Q 𝑢}⟩ +P 1P), 1P⟩] ~R , 0R⟩ ∈ 𝑧)))
14 opeq1 3570 . . . . . . . . . . . . . . 15 (𝑤 = 𝑘 → ⟨𝑤, 1𝑜⟩ = ⟨𝑘, 1𝑜⟩)
1514eceq1d 6165 . . . . . . . . . . . . . 14 (𝑤 = 𝑘 → [⟨𝑤, 1𝑜⟩] ~Q = [⟨𝑘, 1𝑜⟩] ~Q )
1615breq2d 3797 . . . . . . . . . . . . 13 (𝑤 = 𝑘 → (𝑙 <Q [⟨𝑤, 1𝑜⟩] ~Q𝑙 <Q [⟨𝑘, 1𝑜⟩] ~Q ))
1716abbidv 2196 . . . . . . . . . . . 12 (𝑤 = 𝑘 → {𝑙𝑙 <Q [⟨𝑤, 1𝑜⟩] ~Q } = {𝑙𝑙 <Q [⟨𝑘, 1𝑜⟩] ~Q })
1815breq1d 3795 . . . . . . . . . . . . 13 (𝑤 = 𝑘 → ([⟨𝑤, 1𝑜⟩] ~Q <Q 𝑢 ↔ [⟨𝑘, 1𝑜⟩] ~Q <Q 𝑢))
1918abbidv 2196 . . . . . . . . . . . 12 (𝑤 = 𝑘 → {𝑢 ∣ [⟨𝑤, 1𝑜⟩] ~Q <Q 𝑢} = {𝑢 ∣ [⟨𝑘, 1𝑜⟩] ~Q <Q 𝑢})
2017, 19opeq12d 3578 . . . . . . . . . . 11 (𝑤 = 𝑘 → ⟨{𝑙𝑙 <Q [⟨𝑤, 1𝑜⟩] ~Q }, {𝑢 ∣ [⟨𝑤, 1𝑜⟩] ~Q <Q 𝑢}⟩ = ⟨{𝑙𝑙 <Q [⟨𝑘, 1𝑜⟩] ~Q }, {𝑢 ∣ [⟨𝑘, 1𝑜⟩] ~Q <Q 𝑢}⟩)
2120oveq1d 5547 . . . . . . . . . 10 (𝑤 = 𝑘 → (⟨{𝑙𝑙 <Q [⟨𝑤, 1𝑜⟩] ~Q }, {𝑢 ∣ [⟨𝑤, 1𝑜⟩] ~Q <Q 𝑢}⟩ +P 1P) = (⟨{𝑙𝑙 <Q [⟨𝑘, 1𝑜⟩] ~Q }, {𝑢 ∣ [⟨𝑘, 1𝑜⟩] ~Q <Q 𝑢}⟩ +P 1P))
2221opeq1d 3576 . . . . . . . . 9 (𝑤 = 𝑘 → ⟨(⟨{𝑙𝑙 <Q [⟨𝑤, 1𝑜⟩] ~Q }, {𝑢 ∣ [⟨𝑤, 1𝑜⟩] ~Q <Q 𝑢}⟩ +P 1P), 1P⟩ = ⟨(⟨{𝑙𝑙 <Q [⟨𝑘, 1𝑜⟩] ~Q }, {𝑢 ∣ [⟨𝑘, 1𝑜⟩] ~Q <Q 𝑢}⟩ +P 1P), 1P⟩)
2322eceq1d 6165 . . . . . . . 8 (𝑤 = 𝑘 → [⟨(⟨{𝑙𝑙 <Q [⟨𝑤, 1𝑜⟩] ~Q }, {𝑢 ∣ [⟨𝑤, 1𝑜⟩] ~Q <Q 𝑢}⟩ +P 1P), 1P⟩] ~R = [⟨(⟨{𝑙𝑙 <Q [⟨𝑘, 1𝑜⟩] ~Q }, {𝑢 ∣ [⟨𝑘, 1𝑜⟩] ~Q <Q 𝑢}⟩ +P 1P), 1P⟩] ~R )
2423opeq1d 3576 . . . . . . 7 (𝑤 = 𝑘 → ⟨[⟨(⟨{𝑙𝑙 <Q [⟨𝑤, 1𝑜⟩] ~Q }, {𝑢 ∣ [⟨𝑤, 1𝑜⟩] ~Q <Q 𝑢}⟩ +P 1P), 1P⟩] ~R , 0R⟩ = ⟨[⟨(⟨{𝑙𝑙 <Q [⟨𝑘, 1𝑜⟩] ~Q }, {𝑢 ∣ [⟨𝑘, 1𝑜⟩] ~Q <Q 𝑢}⟩ +P 1P), 1P⟩] ~R , 0R⟩)
2524eleq1d 2147 . . . . . 6 (𝑤 = 𝑘 → (⟨[⟨(⟨{𝑙𝑙 <Q [⟨𝑤, 1𝑜⟩] ~Q }, {𝑢 ∣ [⟨𝑤, 1𝑜⟩] ~Q <Q 𝑢}⟩ +P 1P), 1P⟩] ~R , 0R⟩ ∈ 𝑧 ↔ ⟨[⟨(⟨{𝑙𝑙 <Q [⟨𝑘, 1𝑜⟩] ~Q }, {𝑢 ∣ [⟨𝑘, 1𝑜⟩] ~Q <Q 𝑢}⟩ +P 1P), 1P⟩] ~R , 0R⟩ ∈ 𝑧))
2625imbi2d 228 . . . . 5 (𝑤 = 𝑘 → (((1 ∈ 𝑧 ∧ ∀𝑦𝑧 (𝑦 + 1) ∈ 𝑧) → ⟨[⟨(⟨{𝑙𝑙 <Q [⟨𝑤, 1𝑜⟩] ~Q }, {𝑢 ∣ [⟨𝑤, 1𝑜⟩] ~Q <Q 𝑢}⟩ +P 1P), 1P⟩] ~R , 0R⟩ ∈ 𝑧) ↔ ((1 ∈ 𝑧 ∧ ∀𝑦𝑧 (𝑦 + 1) ∈ 𝑧) → ⟨[⟨(⟨{𝑙𝑙 <Q [⟨𝑘, 1𝑜⟩] ~Q }, {𝑢 ∣ [⟨𝑘, 1𝑜⟩] ~Q <Q 𝑢}⟩ +P 1P), 1P⟩] ~R , 0R⟩ ∈ 𝑧)))
27 opeq1 3570 . . . . . . . . . . . . . . 15 (𝑤 = (𝑘 +N 1𝑜) → ⟨𝑤, 1𝑜⟩ = ⟨(𝑘 +N 1𝑜), 1𝑜⟩)
2827eceq1d 6165 . . . . . . . . . . . . . 14 (𝑤 = (𝑘 +N 1𝑜) → [⟨𝑤, 1𝑜⟩] ~Q = [⟨(𝑘 +N 1𝑜), 1𝑜⟩] ~Q )
2928breq2d 3797 . . . . . . . . . . . . 13 (𝑤 = (𝑘 +N 1𝑜) → (𝑙 <Q [⟨𝑤, 1𝑜⟩] ~Q𝑙 <Q [⟨(𝑘 +N 1𝑜), 1𝑜⟩] ~Q ))
3029abbidv 2196 . . . . . . . . . . . 12 (𝑤 = (𝑘 +N 1𝑜) → {𝑙𝑙 <Q [⟨𝑤, 1𝑜⟩] ~Q } = {𝑙𝑙 <Q [⟨(𝑘 +N 1𝑜), 1𝑜⟩] ~Q })
3128breq1d 3795 . . . . . . . . . . . . 13 (𝑤 = (𝑘 +N 1𝑜) → ([⟨𝑤, 1𝑜⟩] ~Q <Q 𝑢 ↔ [⟨(𝑘 +N 1𝑜), 1𝑜⟩] ~Q <Q 𝑢))
3231abbidv 2196 . . . . . . . . . . . 12 (𝑤 = (𝑘 +N 1𝑜) → {𝑢 ∣ [⟨𝑤, 1𝑜⟩] ~Q <Q 𝑢} = {𝑢 ∣ [⟨(𝑘 +N 1𝑜), 1𝑜⟩] ~Q <Q 𝑢})
3330, 32opeq12d 3578 . . . . . . . . . . 11 (𝑤 = (𝑘 +N 1𝑜) → ⟨{𝑙𝑙 <Q [⟨𝑤, 1𝑜⟩] ~Q }, {𝑢 ∣ [⟨𝑤, 1𝑜⟩] ~Q <Q 𝑢}⟩ = ⟨{𝑙𝑙 <Q [⟨(𝑘 +N 1𝑜), 1𝑜⟩] ~Q }, {𝑢 ∣ [⟨(𝑘 +N 1𝑜), 1𝑜⟩] ~Q <Q 𝑢}⟩)
3433oveq1d 5547 . . . . . . . . . 10 (𝑤 = (𝑘 +N 1𝑜) → (⟨{𝑙𝑙 <Q [⟨𝑤, 1𝑜⟩] ~Q }, {𝑢 ∣ [⟨𝑤, 1𝑜⟩] ~Q <Q 𝑢}⟩ +P 1P) = (⟨{𝑙𝑙 <Q [⟨(𝑘 +N 1𝑜), 1𝑜⟩] ~Q }, {𝑢 ∣ [⟨(𝑘 +N 1𝑜), 1𝑜⟩] ~Q <Q 𝑢}⟩ +P 1P))
3534opeq1d 3576 . . . . . . . . 9 (𝑤 = (𝑘 +N 1𝑜) → ⟨(⟨{𝑙𝑙 <Q [⟨𝑤, 1𝑜⟩] ~Q }, {𝑢 ∣ [⟨𝑤, 1𝑜⟩] ~Q <Q 𝑢}⟩ +P 1P), 1P⟩ = ⟨(⟨{𝑙𝑙 <Q [⟨(𝑘 +N 1𝑜), 1𝑜⟩] ~Q }, {𝑢 ∣ [⟨(𝑘 +N 1𝑜), 1𝑜⟩] ~Q <Q 𝑢}⟩ +P 1P), 1P⟩)
3635eceq1d 6165 . . . . . . . 8 (𝑤 = (𝑘 +N 1𝑜) → [⟨(⟨{𝑙𝑙 <Q [⟨𝑤, 1𝑜⟩] ~Q }, {𝑢 ∣ [⟨𝑤, 1𝑜⟩] ~Q <Q 𝑢}⟩ +P 1P), 1P⟩] ~R = [⟨(⟨{𝑙𝑙 <Q [⟨(𝑘 +N 1𝑜), 1𝑜⟩] ~Q }, {𝑢 ∣ [⟨(𝑘 +N 1𝑜), 1𝑜⟩] ~Q <Q 𝑢}⟩ +P 1P), 1P⟩] ~R )
3736opeq1d 3576 . . . . . . 7 (𝑤 = (𝑘 +N 1𝑜) → ⟨[⟨(⟨{𝑙𝑙 <Q [⟨𝑤, 1𝑜⟩] ~Q }, {𝑢 ∣ [⟨𝑤, 1𝑜⟩] ~Q <Q 𝑢}⟩ +P 1P), 1P⟩] ~R , 0R⟩ = ⟨[⟨(⟨{𝑙𝑙 <Q [⟨(𝑘 +N 1𝑜), 1𝑜⟩] ~Q }, {𝑢 ∣ [⟨(𝑘 +N 1𝑜), 1𝑜⟩] ~Q <Q 𝑢}⟩ +P 1P), 1P⟩] ~R , 0R⟩)
3837eleq1d 2147 . . . . . 6 (𝑤 = (𝑘 +N 1𝑜) → (⟨[⟨(⟨{𝑙𝑙 <Q [⟨𝑤, 1𝑜⟩] ~Q }, {𝑢 ∣ [⟨𝑤, 1𝑜⟩] ~Q <Q 𝑢}⟩ +P 1P), 1P⟩] ~R , 0R⟩ ∈ 𝑧 ↔ ⟨[⟨(⟨{𝑙𝑙 <Q [⟨(𝑘 +N 1𝑜), 1𝑜⟩] ~Q }, {𝑢 ∣ [⟨(𝑘 +N 1𝑜), 1𝑜⟩] ~Q <Q 𝑢}⟩ +P 1P), 1P⟩] ~R , 0R⟩ ∈ 𝑧))
3938imbi2d 228 . . . . 5 (𝑤 = (𝑘 +N 1𝑜) → (((1 ∈ 𝑧 ∧ ∀𝑦𝑧 (𝑦 + 1) ∈ 𝑧) → ⟨[⟨(⟨{𝑙𝑙 <Q [⟨𝑤, 1𝑜⟩] ~Q }, {𝑢 ∣ [⟨𝑤, 1𝑜⟩] ~Q <Q 𝑢}⟩ +P 1P), 1P⟩] ~R , 0R⟩ ∈ 𝑧) ↔ ((1 ∈ 𝑧 ∧ ∀𝑦𝑧 (𝑦 + 1) ∈ 𝑧) → ⟨[⟨(⟨{𝑙𝑙 <Q [⟨(𝑘 +N 1𝑜), 1𝑜⟩] ~Q }, {𝑢 ∣ [⟨(𝑘 +N 1𝑜), 1𝑜⟩] ~Q <Q 𝑢}⟩ +P 1P), 1P⟩] ~R , 0R⟩ ∈ 𝑧)))
40 opeq1 3570 . . . . . . . . . . . . . . 15 (𝑤 = 𝑁 → ⟨𝑤, 1𝑜⟩ = ⟨𝑁, 1𝑜⟩)
4140eceq1d 6165 . . . . . . . . . . . . . 14 (𝑤 = 𝑁 → [⟨𝑤, 1𝑜⟩] ~Q = [⟨𝑁, 1𝑜⟩] ~Q )
4241breq2d 3797 . . . . . . . . . . . . 13 (𝑤 = 𝑁 → (𝑙 <Q [⟨𝑤, 1𝑜⟩] ~Q𝑙 <Q [⟨𝑁, 1𝑜⟩] ~Q ))
4342abbidv 2196 . . . . . . . . . . . 12 (𝑤 = 𝑁 → {𝑙𝑙 <Q [⟨𝑤, 1𝑜⟩] ~Q } = {𝑙𝑙 <Q [⟨𝑁, 1𝑜⟩] ~Q })
4441breq1d 3795 . . . . . . . . . . . . 13 (𝑤 = 𝑁 → ([⟨𝑤, 1𝑜⟩] ~Q <Q 𝑢 ↔ [⟨𝑁, 1𝑜⟩] ~Q <Q 𝑢))
4544abbidv 2196 . . . . . . . . . . . 12 (𝑤 = 𝑁 → {𝑢 ∣ [⟨𝑤, 1𝑜⟩] ~Q <Q 𝑢} = {𝑢 ∣ [⟨𝑁, 1𝑜⟩] ~Q <Q 𝑢})
4643, 45opeq12d 3578 . . . . . . . . . . 11 (𝑤 = 𝑁 → ⟨{𝑙𝑙 <Q [⟨𝑤, 1𝑜⟩] ~Q }, {𝑢 ∣ [⟨𝑤, 1𝑜⟩] ~Q <Q 𝑢}⟩ = ⟨{𝑙𝑙 <Q [⟨𝑁, 1𝑜⟩] ~Q }, {𝑢 ∣ [⟨𝑁, 1𝑜⟩] ~Q <Q 𝑢}⟩)
4746oveq1d 5547 . . . . . . . . . 10 (𝑤 = 𝑁 → (⟨{𝑙𝑙 <Q [⟨𝑤, 1𝑜⟩] ~Q }, {𝑢 ∣ [⟨𝑤, 1𝑜⟩] ~Q <Q 𝑢}⟩ +P 1P) = (⟨{𝑙𝑙 <Q [⟨𝑁, 1𝑜⟩] ~Q }, {𝑢 ∣ [⟨𝑁, 1𝑜⟩] ~Q <Q 𝑢}⟩ +P 1P))
4847opeq1d 3576 . . . . . . . . 9 (𝑤 = 𝑁 → ⟨(⟨{𝑙𝑙 <Q [⟨𝑤, 1𝑜⟩] ~Q }, {𝑢 ∣ [⟨𝑤, 1𝑜⟩] ~Q <Q 𝑢}⟩ +P 1P), 1P⟩ = ⟨(⟨{𝑙𝑙 <Q [⟨𝑁, 1𝑜⟩] ~Q }, {𝑢 ∣ [⟨𝑁, 1𝑜⟩] ~Q <Q 𝑢}⟩ +P 1P), 1P⟩)
4948eceq1d 6165 . . . . . . . 8 (𝑤 = 𝑁 → [⟨(⟨{𝑙𝑙 <Q [⟨𝑤, 1𝑜⟩] ~Q }, {𝑢 ∣ [⟨𝑤, 1𝑜⟩] ~Q <Q 𝑢}⟩ +P 1P), 1P⟩] ~R = [⟨(⟨{𝑙𝑙 <Q [⟨𝑁, 1𝑜⟩] ~Q }, {𝑢 ∣ [⟨𝑁, 1𝑜⟩] ~Q <Q 𝑢}⟩ +P 1P), 1P⟩] ~R )
5049opeq1d 3576 . . . . . . 7 (𝑤 = 𝑁 → ⟨[⟨(⟨{𝑙𝑙 <Q [⟨𝑤, 1𝑜⟩] ~Q }, {𝑢 ∣ [⟨𝑤, 1𝑜⟩] ~Q <Q 𝑢}⟩ +P 1P), 1P⟩] ~R , 0R⟩ = ⟨[⟨(⟨{𝑙𝑙 <Q [⟨𝑁, 1𝑜⟩] ~Q }, {𝑢 ∣ [⟨𝑁, 1𝑜⟩] ~Q <Q 𝑢}⟩ +P 1P), 1P⟩] ~R , 0R⟩)
5150eleq1d 2147 . . . . . 6 (𝑤 = 𝑁 → (⟨[⟨(⟨{𝑙𝑙 <Q [⟨𝑤, 1𝑜⟩] ~Q }, {𝑢 ∣ [⟨𝑤, 1𝑜⟩] ~Q <Q 𝑢}⟩ +P 1P), 1P⟩] ~R , 0R⟩ ∈ 𝑧 ↔ ⟨[⟨(⟨{𝑙𝑙 <Q [⟨𝑁, 1𝑜⟩] ~Q }, {𝑢 ∣ [⟨𝑁, 1𝑜⟩] ~Q <Q 𝑢}⟩ +P 1P), 1P⟩] ~R , 0R⟩ ∈ 𝑧))
5251imbi2d 228 . . . . 5 (𝑤 = 𝑁 → (((1 ∈ 𝑧 ∧ ∀𝑦𝑧 (𝑦 + 1) ∈ 𝑧) → ⟨[⟨(⟨{𝑙𝑙 <Q [⟨𝑤, 1𝑜⟩] ~Q }, {𝑢 ∣ [⟨𝑤, 1𝑜⟩] ~Q <Q 𝑢}⟩ +P 1P), 1P⟩] ~R , 0R⟩ ∈ 𝑧) ↔ ((1 ∈ 𝑧 ∧ ∀𝑦𝑧 (𝑦 + 1) ∈ 𝑧) → ⟨[⟨(⟨{𝑙𝑙 <Q [⟨𝑁, 1𝑜⟩] ~Q }, {𝑢 ∣ [⟨𝑁, 1𝑜⟩] ~Q <Q 𝑢}⟩ +P 1P), 1P⟩] ~R , 0R⟩ ∈ 𝑧)))
53 pitonnlem1 7013 . . . . . . . 8 ⟨[⟨(⟨{𝑙𝑙 <Q [⟨1𝑜, 1𝑜⟩] ~Q }, {𝑢 ∣ [⟨1𝑜, 1𝑜⟩] ~Q <Q 𝑢}⟩ +P 1P), 1P⟩] ~R , 0R⟩ = 1
5453eleq1i 2144 . . . . . . 7 (⟨[⟨(⟨{𝑙𝑙 <Q [⟨1𝑜, 1𝑜⟩] ~Q }, {𝑢 ∣ [⟨1𝑜, 1𝑜⟩] ~Q <Q 𝑢}⟩ +P 1P), 1P⟩] ~R , 0R⟩ ∈ 𝑧 ↔ 1 ∈ 𝑧)
5554biimpri 131 . . . . . 6 (1 ∈ 𝑧 → ⟨[⟨(⟨{𝑙𝑙 <Q [⟨1𝑜, 1𝑜⟩] ~Q }, {𝑢 ∣ [⟨1𝑜, 1𝑜⟩] ~Q <Q 𝑢}⟩ +P 1P), 1P⟩] ~R , 0R⟩ ∈ 𝑧)
5655adantr 270 . . . . 5 ((1 ∈ 𝑧 ∧ ∀𝑦𝑧 (𝑦 + 1) ∈ 𝑧) → ⟨[⟨(⟨{𝑙𝑙 <Q [⟨1𝑜, 1𝑜⟩] ~Q }, {𝑢 ∣ [⟨1𝑜, 1𝑜⟩] ~Q <Q 𝑢}⟩ +P 1P), 1P⟩] ~R , 0R⟩ ∈ 𝑧)
57 oveq1 5539 . . . . . . . . . . 11 (𝑦 = ⟨[⟨(⟨{𝑙𝑙 <Q [⟨𝑘, 1𝑜⟩] ~Q }, {𝑢 ∣ [⟨𝑘, 1𝑜⟩] ~Q <Q 𝑢}⟩ +P 1P), 1P⟩] ~R , 0R⟩ → (𝑦 + 1) = (⟨[⟨(⟨{𝑙𝑙 <Q [⟨𝑘, 1𝑜⟩] ~Q }, {𝑢 ∣ [⟨𝑘, 1𝑜⟩] ~Q <Q 𝑢}⟩ +P 1P), 1P⟩] ~R , 0R⟩ + 1))
5857eleq1d 2147 . . . . . . . . . 10 (𝑦 = ⟨[⟨(⟨{𝑙𝑙 <Q [⟨𝑘, 1𝑜⟩] ~Q }, {𝑢 ∣ [⟨𝑘, 1𝑜⟩] ~Q <Q 𝑢}⟩ +P 1P), 1P⟩] ~R , 0R⟩ → ((𝑦 + 1) ∈ 𝑧 ↔ (⟨[⟨(⟨{𝑙𝑙 <Q [⟨𝑘, 1𝑜⟩] ~Q }, {𝑢 ∣ [⟨𝑘, 1𝑜⟩] ~Q <Q 𝑢}⟩ +P 1P), 1P⟩] ~R , 0R⟩ + 1) ∈ 𝑧))
5958rspccv 2698 . . . . . . . . 9 (∀𝑦𝑧 (𝑦 + 1) ∈ 𝑧 → (⟨[⟨(⟨{𝑙𝑙 <Q [⟨𝑘, 1𝑜⟩] ~Q }, {𝑢 ∣ [⟨𝑘, 1𝑜⟩] ~Q <Q 𝑢}⟩ +P 1P), 1P⟩] ~R , 0R⟩ ∈ 𝑧 → (⟨[⟨(⟨{𝑙𝑙 <Q [⟨𝑘, 1𝑜⟩] ~Q }, {𝑢 ∣ [⟨𝑘, 1𝑜⟩] ~Q <Q 𝑢}⟩ +P 1P), 1P⟩] ~R , 0R⟩ + 1) ∈ 𝑧))
6059ad2antll 474 . . . . . . . 8 ((𝑘N ∧ (1 ∈ 𝑧 ∧ ∀𝑦𝑧 (𝑦 + 1) ∈ 𝑧)) → (⟨[⟨(⟨{𝑙𝑙 <Q [⟨𝑘, 1𝑜⟩] ~Q }, {𝑢 ∣ [⟨𝑘, 1𝑜⟩] ~Q <Q 𝑢}⟩ +P 1P), 1P⟩] ~R , 0R⟩ ∈ 𝑧 → (⟨[⟨(⟨{𝑙𝑙 <Q [⟨𝑘, 1𝑜⟩] ~Q }, {𝑢 ∣ [⟨𝑘, 1𝑜⟩] ~Q <Q 𝑢}⟩ +P 1P), 1P⟩] ~R , 0R⟩ + 1) ∈ 𝑧))
61 pitonnlem2 7015 . . . . . . . . . 10 (𝑘N → (⟨[⟨(⟨{𝑙𝑙 <Q [⟨𝑘, 1𝑜⟩] ~Q }, {𝑢 ∣ [⟨𝑘, 1𝑜⟩] ~Q <Q 𝑢}⟩ +P 1P), 1P⟩] ~R , 0R⟩ + 1) = ⟨[⟨(⟨{𝑙𝑙 <Q [⟨(𝑘 +N 1𝑜), 1𝑜⟩] ~Q }, {𝑢 ∣ [⟨(𝑘 +N 1𝑜), 1𝑜⟩] ~Q <Q 𝑢}⟩ +P 1P), 1P⟩] ~R , 0R⟩)
6261eleq1d 2147 . . . . . . . . 9 (𝑘N → ((⟨[⟨(⟨{𝑙𝑙 <Q [⟨𝑘, 1𝑜⟩] ~Q }, {𝑢 ∣ [⟨𝑘, 1𝑜⟩] ~Q <Q 𝑢}⟩ +P 1P), 1P⟩] ~R , 0R⟩ + 1) ∈ 𝑧 ↔ ⟨[⟨(⟨{𝑙𝑙 <Q [⟨(𝑘 +N 1𝑜), 1𝑜⟩] ~Q }, {𝑢 ∣ [⟨(𝑘 +N 1𝑜), 1𝑜⟩] ~Q <Q 𝑢}⟩ +P 1P), 1P⟩] ~R , 0R⟩ ∈ 𝑧))
6362adantr 270 . . . . . . . 8 ((𝑘N ∧ (1 ∈ 𝑧 ∧ ∀𝑦𝑧 (𝑦 + 1) ∈ 𝑧)) → ((⟨[⟨(⟨{𝑙𝑙 <Q [⟨𝑘, 1𝑜⟩] ~Q }, {𝑢 ∣ [⟨𝑘, 1𝑜⟩] ~Q <Q 𝑢}⟩ +P 1P), 1P⟩] ~R , 0R⟩ + 1) ∈ 𝑧 ↔ ⟨[⟨(⟨{𝑙𝑙 <Q [⟨(𝑘 +N 1𝑜), 1𝑜⟩] ~Q }, {𝑢 ∣ [⟨(𝑘 +N 1𝑜), 1𝑜⟩] ~Q <Q 𝑢}⟩ +P 1P), 1P⟩] ~R , 0R⟩ ∈ 𝑧))
6460, 63sylibd 147 . . . . . . 7 ((𝑘N ∧ (1 ∈ 𝑧 ∧ ∀𝑦𝑧 (𝑦 + 1) ∈ 𝑧)) → (⟨[⟨(⟨{𝑙𝑙 <Q [⟨𝑘, 1𝑜⟩] ~Q }, {𝑢 ∣ [⟨𝑘, 1𝑜⟩] ~Q <Q 𝑢}⟩ +P 1P), 1P⟩] ~R , 0R⟩ ∈ 𝑧 → ⟨[⟨(⟨{𝑙𝑙 <Q [⟨(𝑘 +N 1𝑜), 1𝑜⟩] ~Q }, {𝑢 ∣ [⟨(𝑘 +N 1𝑜), 1𝑜⟩] ~Q <Q 𝑢}⟩ +P 1P), 1P⟩] ~R , 0R⟩ ∈ 𝑧))
6564ex 113 . . . . . 6 (𝑘N → ((1 ∈ 𝑧 ∧ ∀𝑦𝑧 (𝑦 + 1) ∈ 𝑧) → (⟨[⟨(⟨{𝑙𝑙 <Q [⟨𝑘, 1𝑜⟩] ~Q }, {𝑢 ∣ [⟨𝑘, 1𝑜⟩] ~Q <Q 𝑢}⟩ +P 1P), 1P⟩] ~R , 0R⟩ ∈ 𝑧 → ⟨[⟨(⟨{𝑙𝑙 <Q [⟨(𝑘 +N 1𝑜), 1𝑜⟩] ~Q }, {𝑢 ∣ [⟨(𝑘 +N 1𝑜), 1𝑜⟩] ~Q <Q 𝑢}⟩ +P 1P), 1P⟩] ~R , 0R⟩ ∈ 𝑧)))
6665a2d 26 . . . . 5 (𝑘N → (((1 ∈ 𝑧 ∧ ∀𝑦𝑧 (𝑦 + 1) ∈ 𝑧) → ⟨[⟨(⟨{𝑙𝑙 <Q [⟨𝑘, 1𝑜⟩] ~Q }, {𝑢 ∣ [⟨𝑘, 1𝑜⟩] ~Q <Q 𝑢}⟩ +P 1P), 1P⟩] ~R , 0R⟩ ∈ 𝑧) → ((1 ∈ 𝑧 ∧ ∀𝑦𝑧 (𝑦 + 1) ∈ 𝑧) → ⟨[⟨(⟨{𝑙𝑙 <Q [⟨(𝑘 +N 1𝑜), 1𝑜⟩] ~Q }, {𝑢 ∣ [⟨(𝑘 +N 1𝑜), 1𝑜⟩] ~Q <Q 𝑢}⟩ +P 1P), 1P⟩] ~R , 0R⟩ ∈ 𝑧)))
6713, 26, 39, 52, 56, 66indpi 6532 . . . 4 (𝑁N → ((1 ∈ 𝑧 ∧ ∀𝑦𝑧 (𝑦 + 1) ∈ 𝑧) → ⟨[⟨(⟨{𝑙𝑙 <Q [⟨𝑁, 1𝑜⟩] ~Q }, {𝑢 ∣ [⟨𝑁, 1𝑜⟩] ~Q <Q 𝑢}⟩ +P 1P), 1P⟩] ~R , 0R⟩ ∈ 𝑧))
6867alrimiv 1795 . . 3 (𝑁N → ∀𝑧((1 ∈ 𝑧 ∧ ∀𝑦𝑧 (𝑦 + 1) ∈ 𝑧) → ⟨[⟨(⟨{𝑙𝑙 <Q [⟨𝑁, 1𝑜⟩] ~Q }, {𝑢 ∣ [⟨𝑁, 1𝑜⟩] ~Q <Q 𝑢}⟩ +P 1P), 1P⟩] ~R , 0R⟩ ∈ 𝑧))
69 eleq2 2142 . . . . 5 (𝑥 = 𝑧 → (1 ∈ 𝑥 ↔ 1 ∈ 𝑧))
70 eleq2 2142 . . . . . 6 (𝑥 = 𝑧 → ((𝑦 + 1) ∈ 𝑥 ↔ (𝑦 + 1) ∈ 𝑧))
7170raleqbi1dv 2557 . . . . 5 (𝑥 = 𝑧 → (∀𝑦𝑥 (𝑦 + 1) ∈ 𝑥 ↔ ∀𝑦𝑧 (𝑦 + 1) ∈ 𝑧))
7269, 71anbi12d 456 . . . 4 (𝑥 = 𝑧 → ((1 ∈ 𝑥 ∧ ∀𝑦𝑥 (𝑦 + 1) ∈ 𝑥) ↔ (1 ∈ 𝑧 ∧ ∀𝑦𝑧 (𝑦 + 1) ∈ 𝑧)))
7372ralab 2752 . . 3 (∀𝑧 ∈ {𝑥 ∣ (1 ∈ 𝑥 ∧ ∀𝑦𝑥 (𝑦 + 1) ∈ 𝑥)}⟨[⟨(⟨{𝑙𝑙 <Q [⟨𝑁, 1𝑜⟩] ~Q }, {𝑢 ∣ [⟨𝑁, 1𝑜⟩] ~Q <Q 𝑢}⟩ +P 1P), 1P⟩] ~R , 0R⟩ ∈ 𝑧 ↔ ∀𝑧((1 ∈ 𝑧 ∧ ∀𝑦𝑧 (𝑦 + 1) ∈ 𝑧) → ⟨[⟨(⟨{𝑙𝑙 <Q [⟨𝑁, 1𝑜⟩] ~Q }, {𝑢 ∣ [⟨𝑁, 1𝑜⟩] ~Q <Q 𝑢}⟩ +P 1P), 1P⟩] ~R , 0R⟩ ∈ 𝑧))
7468, 73sylibr 132 . 2 (𝑁N → ∀𝑧 ∈ {𝑥 ∣ (1 ∈ 𝑥 ∧ ∀𝑦𝑥 (𝑦 + 1) ∈ 𝑥)}⟨[⟨(⟨{𝑙𝑙 <Q [⟨𝑁, 1𝑜⟩] ~Q }, {𝑢 ∣ [⟨𝑁, 1𝑜⟩] ~Q <Q 𝑢}⟩ +P 1P), 1P⟩] ~R , 0R⟩ ∈ 𝑧)
75 nnprlu 6743 . . . . . . 7 (𝑁N → ⟨{𝑙𝑙 <Q [⟨𝑁, 1𝑜⟩] ~Q }, {𝑢 ∣ [⟨𝑁, 1𝑜⟩] ~Q <Q 𝑢}⟩ ∈ P)
76 1pr 6744 . . . . . . 7 1PP
77 addclpr 6727 . . . . . . 7 ((⟨{𝑙𝑙 <Q [⟨𝑁, 1𝑜⟩] ~Q }, {𝑢 ∣ [⟨𝑁, 1𝑜⟩] ~Q <Q 𝑢}⟩ ∈ P ∧ 1PP) → (⟨{𝑙𝑙 <Q [⟨𝑁, 1𝑜⟩] ~Q }, {𝑢 ∣ [⟨𝑁, 1𝑜⟩] ~Q <Q 𝑢}⟩ +P 1P) ∈ P)
7875, 76, 77sylancl 404 . . . . . 6 (𝑁N → (⟨{𝑙𝑙 <Q [⟨𝑁, 1𝑜⟩] ~Q }, {𝑢 ∣ [⟨𝑁, 1𝑜⟩] ~Q <Q 𝑢}⟩ +P 1P) ∈ P)
79 opelxpi 4394 . . . . . 6 (((⟨{𝑙𝑙 <Q [⟨𝑁, 1𝑜⟩] ~Q }, {𝑢 ∣ [⟨𝑁, 1𝑜⟩] ~Q <Q 𝑢}⟩ +P 1P) ∈ P ∧ 1PP) → ⟨(⟨{𝑙𝑙 <Q [⟨𝑁, 1𝑜⟩] ~Q }, {𝑢 ∣ [⟨𝑁, 1𝑜⟩] ~Q <Q 𝑢}⟩ +P 1P), 1P⟩ ∈ (P × P))
8078, 76, 79sylancl 404 . . . . 5 (𝑁N → ⟨(⟨{𝑙𝑙 <Q [⟨𝑁, 1𝑜⟩] ~Q }, {𝑢 ∣ [⟨𝑁, 1𝑜⟩] ~Q <Q 𝑢}⟩ +P 1P), 1P⟩ ∈ (P × P))
81 enrex 6914 . . . . . 6 ~R ∈ V
8281ecelqsi 6183 . . . . 5 (⟨(⟨{𝑙𝑙 <Q [⟨𝑁, 1𝑜⟩] ~Q }, {𝑢 ∣ [⟨𝑁, 1𝑜⟩] ~Q <Q 𝑢}⟩ +P 1P), 1P⟩ ∈ (P × P) → [⟨(⟨{𝑙𝑙 <Q [⟨𝑁, 1𝑜⟩] ~Q }, {𝑢 ∣ [⟨𝑁, 1𝑜⟩] ~Q <Q 𝑢}⟩ +P 1P), 1P⟩] ~R ∈ ((P × P) / ~R ))
8380, 82syl 14 . . . 4 (𝑁N → [⟨(⟨{𝑙𝑙 <Q [⟨𝑁, 1𝑜⟩] ~Q }, {𝑢 ∣ [⟨𝑁, 1𝑜⟩] ~Q <Q 𝑢}⟩ +P 1P), 1P⟩] ~R ∈ ((P × P) / ~R ))
84 0r 6927 . . . 4 0RR
85 opelxpi 4394 . . . 4 (([⟨(⟨{𝑙𝑙 <Q [⟨𝑁, 1𝑜⟩] ~Q }, {𝑢 ∣ [⟨𝑁, 1𝑜⟩] ~Q <Q 𝑢}⟩ +P 1P), 1P⟩] ~R ∈ ((P × P) / ~R ) ∧ 0RR) → ⟨[⟨(⟨{𝑙𝑙 <Q [⟨𝑁, 1𝑜⟩] ~Q }, {𝑢 ∣ [⟨𝑁, 1𝑜⟩] ~Q <Q 𝑢}⟩ +P 1P), 1P⟩] ~R , 0R⟩ ∈ (((P × P) / ~R ) × R))
8683, 84, 85sylancl 404 . . 3 (𝑁N → ⟨[⟨(⟨{𝑙𝑙 <Q [⟨𝑁, 1𝑜⟩] ~Q }, {𝑢 ∣ [⟨𝑁, 1𝑜⟩] ~Q <Q 𝑢}⟩ +P 1P), 1P⟩] ~R , 0R⟩ ∈ (((P × P) / ~R ) × R))
87 elintg 3644 . . 3 (⟨[⟨(⟨{𝑙𝑙 <Q [⟨𝑁, 1𝑜⟩] ~Q }, {𝑢 ∣ [⟨𝑁, 1𝑜⟩] ~Q <Q 𝑢}⟩ +P 1P), 1P⟩] ~R , 0R⟩ ∈ (((P × P) / ~R ) × R) → (⟨[⟨(⟨{𝑙𝑙 <Q [⟨𝑁, 1𝑜⟩] ~Q }, {𝑢 ∣ [⟨𝑁, 1𝑜⟩] ~Q <Q 𝑢}⟩ +P 1P), 1P⟩] ~R , 0R⟩ ∈ {𝑥 ∣ (1 ∈ 𝑥 ∧ ∀𝑦𝑥 (𝑦 + 1) ∈ 𝑥)} ↔ ∀𝑧 ∈ {𝑥 ∣ (1 ∈ 𝑥 ∧ ∀𝑦𝑥 (𝑦 + 1) ∈ 𝑥)}⟨[⟨(⟨{𝑙𝑙 <Q [⟨𝑁, 1𝑜⟩] ~Q }, {𝑢 ∣ [⟨𝑁, 1𝑜⟩] ~Q <Q 𝑢}⟩ +P 1P), 1P⟩] ~R , 0R⟩ ∈ 𝑧))
8886, 87syl 14 . 2 (𝑁N → (⟨[⟨(⟨{𝑙𝑙 <Q [⟨𝑁, 1𝑜⟩] ~Q }, {𝑢 ∣ [⟨𝑁, 1𝑜⟩] ~Q <Q 𝑢}⟩ +P 1P), 1P⟩] ~R , 0R⟩ ∈ {𝑥 ∣ (1 ∈ 𝑥 ∧ ∀𝑦𝑥 (𝑦 + 1) ∈ 𝑥)} ↔ ∀𝑧 ∈ {𝑥 ∣ (1 ∈ 𝑥 ∧ ∀𝑦𝑥 (𝑦 + 1) ∈ 𝑥)}⟨[⟨(⟨{𝑙𝑙 <Q [⟨𝑁, 1𝑜⟩] ~Q }, {𝑢 ∣ [⟨𝑁, 1𝑜⟩] ~Q <Q 𝑢}⟩ +P 1P), 1P⟩] ~R , 0R⟩ ∈ 𝑧))
8974, 88mpbird 165 1 (𝑁N → ⟨[⟨(⟨{𝑙𝑙 <Q [⟨𝑁, 1𝑜⟩] ~Q }, {𝑢 ∣ [⟨𝑁, 1𝑜⟩] ~Q <Q 𝑢}⟩ +P 1P), 1P⟩] ~R , 0R⟩ ∈ {𝑥 ∣ (1 ∈ 𝑥 ∧ ∀𝑦𝑥 (𝑦 + 1) ∈ 𝑥)})
Colors of variables: wff set class
Syntax hints:  wi 4  wa 102  wb 103  wal 1282   = wceq 1284  wcel 1433  {cab 2067  wral 2348  cop 3401   cint 3636   class class class wbr 3785   × cxp 4361  (class class class)co 5532  1𝑜c1o 6017  [cec 6127   / cqs 6128  Ncnpi 6462   +N cpli 6463   ~Q ceq 6469   <Q cltq 6475  Pcnp 6481  1Pc1p 6482   +P cpp 6483   ~R cer 6486  Rcnr 6487  0Rc0r 6488  1c1 6982   + caddc 6984
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 104  ax-ia2 105  ax-ia3 106  ax-in1 576  ax-in2 577  ax-io 662  ax-5 1376  ax-7 1377  ax-gen 1378  ax-ie1 1422  ax-ie2 1423  ax-8 1435  ax-10 1436  ax-11 1437  ax-i12 1438  ax-bndl 1439  ax-4 1440  ax-13 1444  ax-14 1445  ax-17 1459  ax-i9 1463  ax-ial 1467  ax-i5r 1468  ax-ext 2063  ax-coll 3893  ax-sep 3896  ax-nul 3904  ax-pow 3948  ax-pr 3964  ax-un 4188  ax-setind 4280  ax-iinf 4329
This theorem depends on definitions:  df-bi 115  df-dc 776  df-3or 920  df-3an 921  df-tru 1287  df-fal 1290  df-nf 1390  df-sb 1686  df-eu 1944  df-mo 1945  df-clab 2068  df-cleq 2074  df-clel 2077  df-nfc 2208  df-ne 2246  df-ral 2353  df-rex 2354  df-reu 2355  df-rab 2357  df-v 2603  df-sbc 2816  df-csb 2909  df-dif 2975  df-un 2977  df-in 2979  df-ss 2986  df-nul 3252  df-pw 3384  df-sn 3404  df-pr 3405  df-op 3407  df-uni 3602  df-int 3637  df-iun 3680  df-br 3786  df-opab 3840  df-mpt 3841  df-tr 3876  df-eprel 4044  df-id 4048  df-po 4051  df-iso 4052  df-iord 4121  df-on 4123  df-suc 4126  df-iom 4332  df-xp 4369  df-rel 4370  df-cnv 4371  df-co 4372  df-dm 4373  df-rn 4374  df-res 4375  df-ima 4376  df-iota 4887  df-fun 4924  df-fn 4925  df-f 4926  df-f1 4927  df-fo 4928  df-f1o 4929  df-fv 4930  df-ov 5535  df-oprab 5536  df-mpt2 5537  df-1st 5787  df-2nd 5788  df-recs 5943  df-irdg 5980  df-1o 6024  df-2o 6025  df-oadd 6028  df-omul 6029  df-er 6129  df-ec 6131  df-qs 6135  df-ni 6494  df-pli 6495  df-mi 6496  df-lti 6497  df-plpq 6534  df-mpq 6535  df-enq 6537  df-nqqs 6538  df-plqqs 6539  df-mqqs 6540  df-1nqqs 6541  df-rq 6542  df-ltnqqs 6543  df-enq0 6614  df-nq0 6615  df-0nq0 6616  df-plq0 6617  df-mq0 6618  df-inp 6656  df-i1p 6657  df-iplp 6658  df-enr 6903  df-nr 6904  df-plr 6905  df-0r 6908  df-1r 6909  df-c 6987  df-1 6989  df-add 6992
This theorem is referenced by:  axarch  7057  axcaucvglemcl  7061  axcaucvglemval  7063  axcaucvglemcau  7064  axcaucvglemres  7065
  Copyright terms: Public domain W3C validator