ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  addvalex GIF version

Theorem addvalex 7012
Description: Existence of a sum. This is dependent on how we define + so once we proceed to real number axioms we will replace it with theorems such as addcl 7098. (Contributed by Jim Kingdon, 14-Jul-2021.)
Assertion
Ref Expression
addvalex ((𝐴𝑉𝐵𝑊) → (𝐴 + 𝐵) ∈ V)

Proof of Theorem addvalex
Dummy variables 𝑢 𝑓 𝑣 𝑤 𝑥 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 df-ov 5535 . 2 (𝐴 + 𝐵) = ( + ‘⟨𝐴, 𝐵⟩)
2 df-nr 6904 . . . . 5 R = ((P × P) / ~R )
3 npex 6663 . . . . . . 7 P ∈ V
43, 3xpex 4471 . . . . . 6 (P × P) ∈ V
54qsex 6186 . . . . 5 ((P × P) / ~R ) ∈ V
62, 5eqeltri 2151 . . . 4 R ∈ V
7 df-add 6992 . . . . 5 + = {⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∣ ((𝑥 ∈ ℂ ∧ 𝑦 ∈ ℂ) ∧ ∃𝑤𝑣𝑢𝑓((𝑥 = ⟨𝑤, 𝑣⟩ ∧ 𝑦 = ⟨𝑢, 𝑓⟩) ∧ 𝑧 = ⟨(𝑤 +R 𝑢), (𝑣 +R 𝑓)⟩))}
8 df-c 6987 . . . . . . . . 9 ℂ = (R × R)
98eleq2i 2145 . . . . . . . 8 (𝑥 ∈ ℂ ↔ 𝑥 ∈ (R × R))
108eleq2i 2145 . . . . . . . 8 (𝑦 ∈ ℂ ↔ 𝑦 ∈ (R × R))
119, 10anbi12i 447 . . . . . . 7 ((𝑥 ∈ ℂ ∧ 𝑦 ∈ ℂ) ↔ (𝑥 ∈ (R × R) ∧ 𝑦 ∈ (R × R)))
1211anbi1i 445 . . . . . 6 (((𝑥 ∈ ℂ ∧ 𝑦 ∈ ℂ) ∧ ∃𝑤𝑣𝑢𝑓((𝑥 = ⟨𝑤, 𝑣⟩ ∧ 𝑦 = ⟨𝑢, 𝑓⟩) ∧ 𝑧 = ⟨(𝑤 +R 𝑢), (𝑣 +R 𝑓)⟩)) ↔ ((𝑥 ∈ (R × R) ∧ 𝑦 ∈ (R × R)) ∧ ∃𝑤𝑣𝑢𝑓((𝑥 = ⟨𝑤, 𝑣⟩ ∧ 𝑦 = ⟨𝑢, 𝑓⟩) ∧ 𝑧 = ⟨(𝑤 +R 𝑢), (𝑣 +R 𝑓)⟩)))
1312oprabbii 5580 . . . . 5 {⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∣ ((𝑥 ∈ ℂ ∧ 𝑦 ∈ ℂ) ∧ ∃𝑤𝑣𝑢𝑓((𝑥 = ⟨𝑤, 𝑣⟩ ∧ 𝑦 = ⟨𝑢, 𝑓⟩) ∧ 𝑧 = ⟨(𝑤 +R 𝑢), (𝑣 +R 𝑓)⟩))} = {⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∣ ((𝑥 ∈ (R × R) ∧ 𝑦 ∈ (R × R)) ∧ ∃𝑤𝑣𝑢𝑓((𝑥 = ⟨𝑤, 𝑣⟩ ∧ 𝑦 = ⟨𝑢, 𝑓⟩) ∧ 𝑧 = ⟨(𝑤 +R 𝑢), (𝑣 +R 𝑓)⟩))}
147, 13eqtri 2101 . . . 4 + = {⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∣ ((𝑥 ∈ (R × R) ∧ 𝑦 ∈ (R × R)) ∧ ∃𝑤𝑣𝑢𝑓((𝑥 = ⟨𝑤, 𝑣⟩ ∧ 𝑦 = ⟨𝑢, 𝑓⟩) ∧ 𝑧 = ⟨(𝑤 +R 𝑢), (𝑣 +R 𝑓)⟩))}
156, 14oprabex3 5776 . . 3 + ∈ V
16 opexg 3983 . . 3 ((𝐴𝑉𝐵𝑊) → ⟨𝐴, 𝐵⟩ ∈ V)
17 fvexg 5214 . . 3 (( + ∈ V ∧ ⟨𝐴, 𝐵⟩ ∈ V) → ( + ‘⟨𝐴, 𝐵⟩) ∈ V)
1815, 16, 17sylancr 405 . 2 ((𝐴𝑉𝐵𝑊) → ( + ‘⟨𝐴, 𝐵⟩) ∈ V)
191, 18syl5eqel 2165 1 ((𝐴𝑉𝐵𝑊) → (𝐴 + 𝐵) ∈ V)
Colors of variables: wff set class
Syntax hints:  wi 4  wa 102   = wceq 1284  wex 1421  wcel 1433  Vcvv 2601  cop 3401   × cxp 4361  cfv 4922  (class class class)co 5532  {coprab 5533   / cqs 6128  Pcnp 6481   ~R cer 6486  Rcnr 6487   +R cplr 6491  cc 6979   + caddc 6984
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 104  ax-ia2 105  ax-ia3 106  ax-in1 576  ax-in2 577  ax-io 662  ax-5 1376  ax-7 1377  ax-gen 1378  ax-ie1 1422  ax-ie2 1423  ax-8 1435  ax-10 1436  ax-11 1437  ax-i12 1438  ax-bndl 1439  ax-4 1440  ax-13 1444  ax-14 1445  ax-17 1459  ax-i9 1463  ax-ial 1467  ax-i5r 1468  ax-ext 2063  ax-coll 3893  ax-sep 3896  ax-pow 3948  ax-pr 3964  ax-un 4188  ax-iinf 4329
This theorem depends on definitions:  df-bi 115  df-3an 921  df-tru 1287  df-nf 1390  df-sb 1686  df-eu 1944  df-mo 1945  df-clab 2068  df-cleq 2074  df-clel 2077  df-nfc 2208  df-ral 2353  df-rex 2354  df-reu 2355  df-rab 2357  df-v 2603  df-sbc 2816  df-csb 2909  df-dif 2975  df-un 2977  df-in 2979  df-ss 2986  df-pw 3384  df-sn 3404  df-pr 3405  df-op 3407  df-uni 3602  df-int 3637  df-iun 3680  df-br 3786  df-opab 3840  df-mpt 3841  df-id 4048  df-iom 4332  df-xp 4369  df-rel 4370  df-cnv 4371  df-co 4372  df-dm 4373  df-rn 4374  df-res 4375  df-ima 4376  df-iota 4887  df-fun 4924  df-fn 4925  df-f 4926  df-f1 4927  df-fo 4928  df-f1o 4929  df-fv 4930  df-ov 5535  df-oprab 5536  df-qs 6135  df-ni 6494  df-nqqs 6538  df-inp 6656  df-nr 6904  df-c 6987  df-add 6992
This theorem is referenced by:  peano2nnnn  7021
  Copyright terms: Public domain W3C validator