ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  rdg0 GIF version

Theorem rdg0 5997
Description: The initial value of the recursive definition generator. (Contributed by NM, 23-Apr-1995.) (Revised by Mario Carneiro, 14-Nov-2014.)
Hypothesis
Ref Expression
rdg.1 𝐴 ∈ V
Assertion
Ref Expression
rdg0 (rec(𝐹, 𝐴)‘∅) = 𝐴

Proof of Theorem rdg0
Dummy variables 𝑥 𝑔 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 0ex 3905 . . . . 5 ∅ ∈ V
2 dmeq 4553 . . . . . . . 8 (𝑔 = ∅ → dom 𝑔 = dom ∅)
3 fveq1 5197 . . . . . . . . 9 (𝑔 = ∅ → (𝑔𝑥) = (∅‘𝑥))
43fveq2d 5202 . . . . . . . 8 (𝑔 = ∅ → (𝐹‘(𝑔𝑥)) = (𝐹‘(∅‘𝑥)))
52, 4iuneq12d 3702 . . . . . . 7 (𝑔 = ∅ → 𝑥 ∈ dom 𝑔(𝐹‘(𝑔𝑥)) = 𝑥 ∈ dom ∅(𝐹‘(∅‘𝑥)))
65uneq2d 3126 . . . . . 6 (𝑔 = ∅ → (𝐴 𝑥 ∈ dom 𝑔(𝐹‘(𝑔𝑥))) = (𝐴 𝑥 ∈ dom ∅(𝐹‘(∅‘𝑥))))
7 eqid 2081 . . . . . 6 (𝑔 ∈ V ↦ (𝐴 𝑥 ∈ dom 𝑔(𝐹‘(𝑔𝑥)))) = (𝑔 ∈ V ↦ (𝐴 𝑥 ∈ dom 𝑔(𝐹‘(𝑔𝑥))))
8 rdg.1 . . . . . . 7 𝐴 ∈ V
9 dm0 4567 . . . . . . . . . 10 dom ∅ = ∅
10 iuneq1 3691 . . . . . . . . . 10 (dom ∅ = ∅ → 𝑥 ∈ dom ∅(𝐹‘(∅‘𝑥)) = 𝑥 ∈ ∅ (𝐹‘(∅‘𝑥)))
119, 10ax-mp 7 . . . . . . . . 9 𝑥 ∈ dom ∅(𝐹‘(∅‘𝑥)) = 𝑥 ∈ ∅ (𝐹‘(∅‘𝑥))
12 0iun 3735 . . . . . . . . 9 𝑥 ∈ ∅ (𝐹‘(∅‘𝑥)) = ∅
1311, 12eqtri 2101 . . . . . . . 8 𝑥 ∈ dom ∅(𝐹‘(∅‘𝑥)) = ∅
1413, 1eqeltri 2151 . . . . . . 7 𝑥 ∈ dom ∅(𝐹‘(∅‘𝑥)) ∈ V
158, 14unex 4194 . . . . . 6 (𝐴 𝑥 ∈ dom ∅(𝐹‘(∅‘𝑥))) ∈ V
166, 7, 15fvmpt 5270 . . . . 5 (∅ ∈ V → ((𝑔 ∈ V ↦ (𝐴 𝑥 ∈ dom 𝑔(𝐹‘(𝑔𝑥))))‘∅) = (𝐴 𝑥 ∈ dom ∅(𝐹‘(∅‘𝑥))))
171, 16ax-mp 7 . . . 4 ((𝑔 ∈ V ↦ (𝐴 𝑥 ∈ dom 𝑔(𝐹‘(𝑔𝑥))))‘∅) = (𝐴 𝑥 ∈ dom ∅(𝐹‘(∅‘𝑥)))
1817, 15eqeltri 2151 . . 3 ((𝑔 ∈ V ↦ (𝐴 𝑥 ∈ dom 𝑔(𝐹‘(𝑔𝑥))))‘∅) ∈ V
19 df-irdg 5980 . . . 4 rec(𝐹, 𝐴) = recs((𝑔 ∈ V ↦ (𝐴 𝑥 ∈ dom 𝑔(𝐹‘(𝑔𝑥)))))
2019tfr0 5960 . . 3 (((𝑔 ∈ V ↦ (𝐴 𝑥 ∈ dom 𝑔(𝐹‘(𝑔𝑥))))‘∅) ∈ V → (rec(𝐹, 𝐴)‘∅) = ((𝑔 ∈ V ↦ (𝐴 𝑥 ∈ dom 𝑔(𝐹‘(𝑔𝑥))))‘∅))
2118, 20ax-mp 7 . 2 (rec(𝐹, 𝐴)‘∅) = ((𝑔 ∈ V ↦ (𝐴 𝑥 ∈ dom 𝑔(𝐹‘(𝑔𝑥))))‘∅)
2213uneq2i 3123 . . . 4 (𝐴 𝑥 ∈ dom ∅(𝐹‘(∅‘𝑥))) = (𝐴 ∪ ∅)
2317, 22eqtri 2101 . . 3 ((𝑔 ∈ V ↦ (𝐴 𝑥 ∈ dom 𝑔(𝐹‘(𝑔𝑥))))‘∅) = (𝐴 ∪ ∅)
24 un0 3278 . . 3 (𝐴 ∪ ∅) = 𝐴
2523, 24eqtri 2101 . 2 ((𝑔 ∈ V ↦ (𝐴 𝑥 ∈ dom 𝑔(𝐹‘(𝑔𝑥))))‘∅) = 𝐴
2621, 25eqtri 2101 1 (rec(𝐹, 𝐴)‘∅) = 𝐴
Colors of variables: wff set class
Syntax hints:   = wceq 1284  wcel 1433  Vcvv 2601  cun 2971  c0 3251   ciun 3678  cmpt 3839  dom cdm 4363  cfv 4922  reccrdg 5979
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 104  ax-ia2 105  ax-ia3 106  ax-in1 576  ax-in2 577  ax-io 662  ax-5 1376  ax-7 1377  ax-gen 1378  ax-ie1 1422  ax-ie2 1423  ax-8 1435  ax-10 1436  ax-11 1437  ax-i12 1438  ax-bndl 1439  ax-4 1440  ax-13 1444  ax-14 1445  ax-17 1459  ax-i9 1463  ax-ial 1467  ax-i5r 1468  ax-ext 2063  ax-sep 3896  ax-nul 3904  ax-pow 3948  ax-pr 3964  ax-un 4188  ax-setind 4280
This theorem depends on definitions:  df-bi 115  df-3an 921  df-tru 1287  df-fal 1290  df-nf 1390  df-sb 1686  df-eu 1944  df-mo 1945  df-clab 2068  df-cleq 2074  df-clel 2077  df-nfc 2208  df-ral 2353  df-rex 2354  df-rab 2357  df-v 2603  df-sbc 2816  df-csb 2909  df-dif 2975  df-un 2977  df-in 2979  df-ss 2986  df-nul 3252  df-pw 3384  df-sn 3404  df-pr 3405  df-op 3407  df-uni 3602  df-iun 3680  df-br 3786  df-opab 3840  df-mpt 3841  df-tr 3876  df-id 4048  df-iord 4121  df-on 4123  df-suc 4126  df-xp 4369  df-rel 4370  df-cnv 4371  df-co 4372  df-dm 4373  df-res 4375  df-iota 4887  df-fun 4924  df-fn 4925  df-fv 4930  df-recs 5943  df-irdg 5980
This theorem is referenced by:  rdg0g  5998  om0  6061
  Copyright terms: Public domain W3C validator