ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  tfrlemiex GIF version

Theorem tfrlemiex 5968
Description: Lemma for tfrlemi1 5969. (Contributed by Jim Kingdon, 18-Mar-2019.) (Proof shortened by Mario Carneiro, 24-May-2019.)
Hypotheses
Ref Expression
tfrlemisucfn.1 𝐴 = {𝑓 ∣ ∃𝑥 ∈ On (𝑓 Fn 𝑥 ∧ ∀𝑦𝑥 (𝑓𝑦) = (𝐹‘(𝑓𝑦)))}
tfrlemisucfn.2 (𝜑 → ∀𝑥(Fun 𝐹 ∧ (𝐹𝑥) ∈ V))
tfrlemi1.3 𝐵 = { ∣ ∃𝑧𝑥𝑔(𝑔 Fn 𝑧𝑔𝐴 = (𝑔 ∪ {⟨𝑧, (𝐹𝑔)⟩}))}
tfrlemi1.4 (𝜑𝑥 ∈ On)
tfrlemi1.5 (𝜑 → ∀𝑧𝑥𝑔(𝑔 Fn 𝑧 ∧ ∀𝑤𝑧 (𝑔𝑤) = (𝐹‘(𝑔𝑤))))
Assertion
Ref Expression
tfrlemiex (𝜑 → ∃𝑓(𝑓 Fn 𝑥 ∧ ∀𝑢𝑥 (𝑓𝑢) = (𝐹‘(𝑓𝑢))))
Distinct variable groups:   𝑓,𝑔,,𝑢,𝑤,𝑥,𝑦,𝑧,𝐴   𝑓,𝐹,𝑔,,𝑢,𝑤,𝑥,𝑦,𝑧   𝜑,𝑤,𝑦   𝑢,𝐵,𝑤,𝑓,𝑔,,𝑧   𝜑,𝑔,,𝑧
Allowed substitution hints:   𝜑(𝑥,𝑢,𝑓)   𝐵(𝑥,𝑦)

Proof of Theorem tfrlemiex
StepHypRef Expression
1 tfrlemisucfn.1 . . . 4 𝐴 = {𝑓 ∣ ∃𝑥 ∈ On (𝑓 Fn 𝑥 ∧ ∀𝑦𝑥 (𝑓𝑦) = (𝐹‘(𝑓𝑦)))}
2 tfrlemisucfn.2 . . . 4 (𝜑 → ∀𝑥(Fun 𝐹 ∧ (𝐹𝑥) ∈ V))
3 tfrlemi1.3 . . . 4 𝐵 = { ∣ ∃𝑧𝑥𝑔(𝑔 Fn 𝑧𝑔𝐴 = (𝑔 ∪ {⟨𝑧, (𝐹𝑔)⟩}))}
4 tfrlemi1.4 . . . 4 (𝜑𝑥 ∈ On)
5 tfrlemi1.5 . . . 4 (𝜑 → ∀𝑧𝑥𝑔(𝑔 Fn 𝑧 ∧ ∀𝑤𝑧 (𝑔𝑤) = (𝐹‘(𝑔𝑤))))
61, 2, 3, 4, 5tfrlemibex 5966 . . 3 (𝜑𝐵 ∈ V)
7 uniexg 4193 . . 3 (𝐵 ∈ V → 𝐵 ∈ V)
86, 7syl 14 . 2 (𝜑 𝐵 ∈ V)
91, 2, 3, 4, 5tfrlemibfn 5965 . . 3 (𝜑 𝐵 Fn 𝑥)
101, 2, 3, 4, 5tfrlemiubacc 5967 . . 3 (𝜑 → ∀𝑢𝑥 ( 𝐵𝑢) = (𝐹‘( 𝐵𝑢)))
119, 10jca 300 . 2 (𝜑 → ( 𝐵 Fn 𝑥 ∧ ∀𝑢𝑥 ( 𝐵𝑢) = (𝐹‘( 𝐵𝑢))))
12 fneq1 5007 . . . 4 (𝑓 = 𝐵 → (𝑓 Fn 𝑥 𝐵 Fn 𝑥))
13 fveq1 5197 . . . . . 6 (𝑓 = 𝐵 → (𝑓𝑢) = ( 𝐵𝑢))
14 reseq1 4624 . . . . . . 7 (𝑓 = 𝐵 → (𝑓𝑢) = ( 𝐵𝑢))
1514fveq2d 5202 . . . . . 6 (𝑓 = 𝐵 → (𝐹‘(𝑓𝑢)) = (𝐹‘( 𝐵𝑢)))
1613, 15eqeq12d 2095 . . . . 5 (𝑓 = 𝐵 → ((𝑓𝑢) = (𝐹‘(𝑓𝑢)) ↔ ( 𝐵𝑢) = (𝐹‘( 𝐵𝑢))))
1716ralbidv 2368 . . . 4 (𝑓 = 𝐵 → (∀𝑢𝑥 (𝑓𝑢) = (𝐹‘(𝑓𝑢)) ↔ ∀𝑢𝑥 ( 𝐵𝑢) = (𝐹‘( 𝐵𝑢))))
1812, 17anbi12d 456 . . 3 (𝑓 = 𝐵 → ((𝑓 Fn 𝑥 ∧ ∀𝑢𝑥 (𝑓𝑢) = (𝐹‘(𝑓𝑢))) ↔ ( 𝐵 Fn 𝑥 ∧ ∀𝑢𝑥 ( 𝐵𝑢) = (𝐹‘( 𝐵𝑢)))))
1918spcegv 2686 . 2 ( 𝐵 ∈ V → (( 𝐵 Fn 𝑥 ∧ ∀𝑢𝑥 ( 𝐵𝑢) = (𝐹‘( 𝐵𝑢))) → ∃𝑓(𝑓 Fn 𝑥 ∧ ∀𝑢𝑥 (𝑓𝑢) = (𝐹‘(𝑓𝑢)))))
208, 11, 19sylc 61 1 (𝜑 → ∃𝑓(𝑓 Fn 𝑥 ∧ ∀𝑢𝑥 (𝑓𝑢) = (𝐹‘(𝑓𝑢))))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 102  w3a 919  wal 1282   = wceq 1284  wex 1421  wcel 1433  {cab 2067  wral 2348  wrex 2349  Vcvv 2601  cun 2971  {csn 3398  cop 3401   cuni 3601  Oncon0 4118  cres 4365  Fun wfun 4916   Fn wfn 4917  cfv 4922
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 104  ax-ia2 105  ax-ia3 106  ax-in1 576  ax-in2 577  ax-io 662  ax-5 1376  ax-7 1377  ax-gen 1378  ax-ie1 1422  ax-ie2 1423  ax-8 1435  ax-10 1436  ax-11 1437  ax-i12 1438  ax-bndl 1439  ax-4 1440  ax-13 1444  ax-14 1445  ax-17 1459  ax-i9 1463  ax-ial 1467  ax-i5r 1468  ax-ext 2063  ax-coll 3893  ax-sep 3896  ax-pow 3948  ax-pr 3964  ax-un 4188  ax-setind 4280
This theorem depends on definitions:  df-bi 115  df-3an 921  df-tru 1287  df-fal 1290  df-nf 1390  df-sb 1686  df-eu 1944  df-mo 1945  df-clab 2068  df-cleq 2074  df-clel 2077  df-nfc 2208  df-ne 2246  df-ral 2353  df-rex 2354  df-reu 2355  df-rab 2357  df-v 2603  df-sbc 2816  df-csb 2909  df-dif 2975  df-un 2977  df-in 2979  df-ss 2986  df-nul 3252  df-pw 3384  df-sn 3404  df-pr 3405  df-op 3407  df-uni 3602  df-iun 3680  df-br 3786  df-opab 3840  df-mpt 3841  df-tr 3876  df-id 4048  df-iord 4121  df-on 4123  df-suc 4126  df-xp 4369  df-rel 4370  df-cnv 4371  df-co 4372  df-dm 4373  df-rn 4374  df-res 4375  df-ima 4376  df-iota 4887  df-fun 4924  df-fn 4925  df-f 4926  df-f1 4927  df-fo 4928  df-f1o 4929  df-fv 4930  df-recs 5943
This theorem is referenced by:  tfrlemi1  5969
  Copyright terms: Public domain W3C validator