ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  xpdom1g GIF version

Theorem xpdom1g 6330
Description: Dominance law for Cartesian product. Theorem 6L(c) of [Enderton] p. 149. (Contributed by NM, 25-Mar-2006.) (Revised by Mario Carneiro, 26-Apr-2015.)
Assertion
Ref Expression
xpdom1g ((𝐶𝑉𝐴𝐵) → (𝐴 × 𝐶) ≼ (𝐵 × 𝐶))

Proof of Theorem xpdom1g
StepHypRef Expression
1 reldom 6249 . . . 4 Rel ≼
21brrelexi 4402 . . 3 (𝐴𝐵𝐴 ∈ V)
3 xpcomeng 6325 . . . 4 ((𝐴 ∈ V ∧ 𝐶𝑉) → (𝐴 × 𝐶) ≈ (𝐶 × 𝐴))
43ancoms 264 . . 3 ((𝐶𝑉𝐴 ∈ V) → (𝐴 × 𝐶) ≈ (𝐶 × 𝐴))
52, 4sylan2 280 . 2 ((𝐶𝑉𝐴𝐵) → (𝐴 × 𝐶) ≈ (𝐶 × 𝐴))
6 xpdom2g 6329 . . 3 ((𝐶𝑉𝐴𝐵) → (𝐶 × 𝐴) ≼ (𝐶 × 𝐵))
71brrelex2i 4403 . . . 4 (𝐴𝐵𝐵 ∈ V)
8 xpcomeng 6325 . . . 4 ((𝐶𝑉𝐵 ∈ V) → (𝐶 × 𝐵) ≈ (𝐵 × 𝐶))
97, 8sylan2 280 . . 3 ((𝐶𝑉𝐴𝐵) → (𝐶 × 𝐵) ≈ (𝐵 × 𝐶))
10 domentr 6294 . . 3 (((𝐶 × 𝐴) ≼ (𝐶 × 𝐵) ∧ (𝐶 × 𝐵) ≈ (𝐵 × 𝐶)) → (𝐶 × 𝐴) ≼ (𝐵 × 𝐶))
116, 9, 10syl2anc 403 . 2 ((𝐶𝑉𝐴𝐵) → (𝐶 × 𝐴) ≼ (𝐵 × 𝐶))
12 endomtr 6293 . 2 (((𝐴 × 𝐶) ≈ (𝐶 × 𝐴) ∧ (𝐶 × 𝐴) ≼ (𝐵 × 𝐶)) → (𝐴 × 𝐶) ≼ (𝐵 × 𝐶))
135, 11, 12syl2anc 403 1 ((𝐶𝑉𝐴𝐵) → (𝐴 × 𝐶) ≼ (𝐵 × 𝐶))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 102  wcel 1433  Vcvv 2601   class class class wbr 3785   × cxp 4361  cen 6242  cdom 6243
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 104  ax-ia2 105  ax-ia3 106  ax-io 662  ax-5 1376  ax-7 1377  ax-gen 1378  ax-ie1 1422  ax-ie2 1423  ax-8 1435  ax-10 1436  ax-11 1437  ax-i12 1438  ax-bndl 1439  ax-4 1440  ax-13 1444  ax-14 1445  ax-17 1459  ax-i9 1463  ax-ial 1467  ax-i5r 1468  ax-ext 2063  ax-sep 3896  ax-pow 3948  ax-pr 3964  ax-un 4188
This theorem depends on definitions:  df-bi 115  df-3an 921  df-tru 1287  df-nf 1390  df-sb 1686  df-eu 1944  df-mo 1945  df-clab 2068  df-cleq 2074  df-clel 2077  df-nfc 2208  df-ral 2353  df-rex 2354  df-rab 2357  df-v 2603  df-sbc 2816  df-csb 2909  df-un 2977  df-in 2979  df-ss 2986  df-pw 3384  df-sn 3404  df-pr 3405  df-op 3407  df-uni 3602  df-br 3786  df-opab 3840  df-mpt 3841  df-id 4048  df-xp 4369  df-rel 4370  df-cnv 4371  df-co 4372  df-dm 4373  df-rn 4374  df-res 4375  df-ima 4376  df-iota 4887  df-fun 4924  df-fn 4925  df-f 4926  df-f1 4927  df-fo 4928  df-f1o 4929  df-fv 4930  df-1st 5787  df-2nd 5788  df-en 6245  df-dom 6246
This theorem is referenced by:  xpdom1  6332
  Copyright terms: Public domain W3C validator