MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  2fvidinvd Structured version   Visualization version   Unicode version

Theorem 2fvidinvd 6554
Description: Show that two functions are inverse to each other by applying them twice to each value of their domains. (Contributed by AV, 13-Dec-2019.)
Hypotheses
Ref Expression
2fvcoidd.f  |-  ( ph  ->  F : A --> B )
2fvcoidd.g  |-  ( ph  ->  G : B --> A )
2fvcoidd.i  |-  ( ph  ->  A. a  e.  A  ( G `  ( F `
 a ) )  =  a )
2fvidf1od.i  |-  ( ph  ->  A. b  e.  B  ( F `  ( G `
 b ) )  =  b )
Assertion
Ref Expression
2fvidinvd  |-  ( ph  ->  `' F  =  G
)
Distinct variable groups:    A, a    F, a    G, a    B, b    F, b    G, b
Allowed substitution hints:    ph( a, b)    A( b)    B( a)

Proof of Theorem 2fvidinvd
StepHypRef Expression
1 2fvcoidd.f . 2  |-  ( ph  ->  F : A --> B )
2 2fvcoidd.g . 2  |-  ( ph  ->  G : B --> A )
3 2fvcoidd.i . . 3  |-  ( ph  ->  A. a  e.  A  ( G `  ( F `
 a ) )  =  a )
41, 2, 32fvcoidd 6552 . 2  |-  ( ph  ->  ( G  o.  F
)  =  (  _I  |`  A ) )
5 2fvidf1od.i . . 3  |-  ( ph  ->  A. b  e.  B  ( F `  ( G `
 b ) )  =  b )
62, 1, 52fvcoidd 6552 . 2  |-  ( ph  ->  ( F  o.  G
)  =  (  _I  |`  B ) )
71, 2, 4, 62fcoidinvd 6550 1  |-  ( ph  ->  `' F  =  G
)
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    = wceq 1483   A.wral 2912   `'ccnv 5113   -->wf 5884   ` cfv 5888
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-ral 2917  df-rex 2918  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-nul 3916  df-if 4087  df-sn 4178  df-pr 4180  df-op 4184  df-uni 4437  df-br 4654  df-opab 4713  df-mpt 4730  df-id 5024  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896
This theorem is referenced by:  m2cpminv  20565
  Copyright terms: Public domain W3C validator