| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > foeqcnvco | Structured version Visualization version Unicode version | ||
| Description: Condition for function equality in terms of vanishing of the composition with the converse. EDITORIAL: Is there a relation-algebraic proof of this? (Contributed by Stefan O'Rear, 12-Feb-2015.) |
| Ref | Expression |
|---|---|
| foeqcnvco |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | fococnv2 6162 |
. . . 4
| |
| 2 | cnveq 5296 |
. . . . . 6
| |
| 3 | 2 | coeq2d 5284 |
. . . . 5
|
| 4 | 3 | eqeq1d 2624 |
. . . 4
|
| 5 | 1, 4 | syl5ibcom 235 |
. . 3
|
| 6 | 5 | adantr 481 |
. 2
|
| 7 | fofn 6117 |
. . . . 5
| |
| 8 | 7 | ad2antrr 762 |
. . . 4
|
| 9 | fofn 6117 |
. . . . 5
| |
| 10 | 9 | ad2antlr 763 |
. . . 4
|
| 11 | 9 | adantl 482 |
. . . . . . . . . . . 12
|
| 12 | fnopfv 6351 |
. . . . . . . . . . . 12
| |
| 13 | 11, 12 | sylan 488 |
. . . . . . . . . . 11
|
| 14 | fvex 6201 |
. . . . . . . . . . . . 13
| |
| 15 | vex 3203 |
. . . . . . . . . . . . 13
| |
| 16 | 14, 15 | brcnv 5305 |
. . . . . . . . . . . 12
|
| 17 | df-br 4654 |
. . . . . . . . . . . 12
| |
| 18 | 16, 17 | bitri 264 |
. . . . . . . . . . 11
|
| 19 | 13, 18 | sylibr 224 |
. . . . . . . . . 10
|
| 20 | 7 | adantr 481 |
. . . . . . . . . . . 12
|
| 21 | fnopfv 6351 |
. . . . . . . . . . . 12
| |
| 22 | 20, 21 | sylan 488 |
. . . . . . . . . . 11
|
| 23 | df-br 4654 |
. . . . . . . . . . 11
| |
| 24 | 22, 23 | sylibr 224 |
. . . . . . . . . 10
|
| 25 | breq2 4657 |
. . . . . . . . . . . 12
| |
| 26 | breq1 4656 |
. . . . . . . . . . . 12
| |
| 27 | 25, 26 | anbi12d 747 |
. . . . . . . . . . 11
|
| 28 | 15, 27 | spcev 3300 |
. . . . . . . . . 10
|
| 29 | 19, 24, 28 | syl2anc 693 |
. . . . . . . . 9
|
| 30 | fvex 6201 |
. . . . . . . . . 10
| |
| 31 | 14, 30 | brco 5292 |
. . . . . . . . 9
|
| 32 | 29, 31 | sylibr 224 |
. . . . . . . 8
|
| 33 | 32 | adantlr 751 |
. . . . . . 7
|
| 34 | breq 4655 |
. . . . . . . 8
| |
| 35 | 34 | ad2antlr 763 |
. . . . . . 7
|
| 36 | 33, 35 | mpbid 222 |
. . . . . 6
|
| 37 | fof 6115 |
. . . . . . . . . 10
| |
| 38 | 37 | adantl 482 |
. . . . . . . . 9
|
| 39 | 38 | ffvelrnda 6359 |
. . . . . . . 8
|
| 40 | fof 6115 |
. . . . . . . . . 10
| |
| 41 | 40 | adantr 481 |
. . . . . . . . 9
|
| 42 | 41 | ffvelrnda 6359 |
. . . . . . . 8
|
| 43 | resieq 5407 |
. . . . . . . 8
| |
| 44 | 39, 42, 43 | syl2anc 693 |
. . . . . . 7
|
| 45 | 44 | adantlr 751 |
. . . . . 6
|
| 46 | 36, 45 | mpbid 222 |
. . . . 5
|
| 47 | 46 | eqcomd 2628 |
. . . 4
|
| 48 | 8, 10, 47 | eqfnfvd 6314 |
. . 3
|
| 49 | 48 | ex 450 |
. 2
|
| 50 | 6, 49 | impbid 202 |
1
|
| Colors of variables: wff setvar class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1722 ax-4 1737 ax-5 1839 ax-6 1888 ax-7 1935 ax-8 1992 ax-9 1999 ax-10 2019 ax-11 2034 ax-12 2047 ax-13 2246 ax-ext 2602 ax-sep 4781 ax-nul 4789 ax-pow 4843 ax-pr 4906 |
| This theorem depends on definitions: df-bi 197 df-or 385 df-an 386 df-3an 1039 df-tru 1486 df-ex 1705 df-nf 1710 df-sb 1881 df-eu 2474 df-mo 2475 df-clab 2609 df-cleq 2615 df-clel 2618 df-nfc 2753 df-ral 2917 df-rex 2918 df-rab 2921 df-v 3202 df-sbc 3436 df-csb 3534 df-dif 3577 df-un 3579 df-in 3581 df-ss 3588 df-nul 3916 df-if 4087 df-sn 4178 df-pr 4180 df-op 4184 df-uni 4437 df-br 4654 df-opab 4713 df-mpt 4730 df-id 5024 df-xp 5120 df-rel 5121 df-cnv 5122 df-co 5123 df-dm 5124 df-rn 5125 df-res 5126 df-ima 5127 df-iota 5851 df-fun 5890 df-fn 5891 df-f 5892 df-fo 5894 df-fv 5896 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |