MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  foeqcnvco Structured version   Visualization version   Unicode version

Theorem foeqcnvco 6555
Description: Condition for function equality in terms of vanishing of the composition with the converse. EDITORIAL: Is there a relation-algebraic proof of this? (Contributed by Stefan O'Rear, 12-Feb-2015.)
Assertion
Ref Expression
foeqcnvco  |-  ( ( F : A -onto-> B  /\  G : A -onto-> B
)  ->  ( F  =  G  <->  ( F  o.  `' G )  =  (  _I  |`  B )
) )

Proof of Theorem foeqcnvco
Dummy variables  x  y are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 fococnv2 6162 . . . 4  |-  ( F : A -onto-> B  -> 
( F  o.  `' F )  =  (  _I  |`  B )
)
2 cnveq 5296 . . . . . 6  |-  ( F  =  G  ->  `' F  =  `' G
)
32coeq2d 5284 . . . . 5  |-  ( F  =  G  ->  ( F  o.  `' F
)  =  ( F  o.  `' G ) )
43eqeq1d 2624 . . . 4  |-  ( F  =  G  ->  (
( F  o.  `' F )  =  (  _I  |`  B )  <->  ( F  o.  `' G
)  =  (  _I  |`  B ) ) )
51, 4syl5ibcom 235 . . 3  |-  ( F : A -onto-> B  -> 
( F  =  G  ->  ( F  o.  `' G )  =  (  _I  |`  B )
) )
65adantr 481 . 2  |-  ( ( F : A -onto-> B  /\  G : A -onto-> B
)  ->  ( F  =  G  ->  ( F  o.  `' G )  =  (  _I  |`  B ) ) )
7 fofn 6117 . . . . 5  |-  ( F : A -onto-> B  ->  F  Fn  A )
87ad2antrr 762 . . . 4  |-  ( ( ( F : A -onto-> B  /\  G : A -onto-> B )  /\  ( F  o.  `' G
)  =  (  _I  |`  B ) )  ->  F  Fn  A )
9 fofn 6117 . . . . 5  |-  ( G : A -onto-> B  ->  G  Fn  A )
109ad2antlr 763 . . . 4  |-  ( ( ( F : A -onto-> B  /\  G : A -onto-> B )  /\  ( F  o.  `' G
)  =  (  _I  |`  B ) )  ->  G  Fn  A )
119adantl 482 . . . . . . . . . . . 12  |-  ( ( F : A -onto-> B  /\  G : A -onto-> B
)  ->  G  Fn  A )
12 fnopfv 6351 . . . . . . . . . . . 12  |-  ( ( G  Fn  A  /\  x  e.  A )  -> 
<. x ,  ( G `
 x ) >.  e.  G )
1311, 12sylan 488 . . . . . . . . . . 11  |-  ( ( ( F : A -onto-> B  /\  G : A -onto-> B )  /\  x  e.  A )  ->  <. x ,  ( G `  x ) >.  e.  G
)
14 fvex 6201 . . . . . . . . . . . . 13  |-  ( G `
 x )  e. 
_V
15 vex 3203 . . . . . . . . . . . . 13  |-  x  e. 
_V
1614, 15brcnv 5305 . . . . . . . . . . . 12  |-  ( ( G `  x ) `' G x  <->  x G
( G `  x
) )
17 df-br 4654 . . . . . . . . . . . 12  |-  ( x G ( G `  x )  <->  <. x ,  ( G `  x
) >.  e.  G )
1816, 17bitri 264 . . . . . . . . . . 11  |-  ( ( G `  x ) `' G x  <->  <. x ,  ( G `  x
) >.  e.  G )
1913, 18sylibr 224 . . . . . . . . . 10  |-  ( ( ( F : A -onto-> B  /\  G : A -onto-> B )  /\  x  e.  A )  ->  ( G `  x ) `' G x )
207adantr 481 . . . . . . . . . . . 12  |-  ( ( F : A -onto-> B  /\  G : A -onto-> B
)  ->  F  Fn  A )
21 fnopfv 6351 . . . . . . . . . . . 12  |-  ( ( F  Fn  A  /\  x  e.  A )  -> 
<. x ,  ( F `
 x ) >.  e.  F )
2220, 21sylan 488 . . . . . . . . . . 11  |-  ( ( ( F : A -onto-> B  /\  G : A -onto-> B )  /\  x  e.  A )  ->  <. x ,  ( F `  x ) >.  e.  F
)
23 df-br 4654 . . . . . . . . . . 11  |-  ( x F ( F `  x )  <->  <. x ,  ( F `  x
) >.  e.  F )
2422, 23sylibr 224 . . . . . . . . . 10  |-  ( ( ( F : A -onto-> B  /\  G : A -onto-> B )  /\  x  e.  A )  ->  x F ( F `  x ) )
25 breq2 4657 . . . . . . . . . . . 12  |-  ( y  =  x  ->  (
( G `  x
) `' G y  <-> 
( G `  x
) `' G x ) )
26 breq1 4656 . . . . . . . . . . . 12  |-  ( y  =  x  ->  (
y F ( F `
 x )  <->  x F
( F `  x
) ) )
2725, 26anbi12d 747 . . . . . . . . . . 11  |-  ( y  =  x  ->  (
( ( G `  x ) `' G
y  /\  y F
( F `  x
) )  <->  ( ( G `  x ) `' G x  /\  x F ( F `  x ) ) ) )
2815, 27spcev 3300 . . . . . . . . . 10  |-  ( ( ( G `  x
) `' G x  /\  x F ( F `  x ) )  ->  E. y
( ( G `  x ) `' G
y  /\  y F
( F `  x
) ) )
2919, 24, 28syl2anc 693 . . . . . . . . 9  |-  ( ( ( F : A -onto-> B  /\  G : A -onto-> B )  /\  x  e.  A )  ->  E. y
( ( G `  x ) `' G
y  /\  y F
( F `  x
) ) )
30 fvex 6201 . . . . . . . . . 10  |-  ( F `
 x )  e. 
_V
3114, 30brco 5292 . . . . . . . . 9  |-  ( ( G `  x ) ( F  o.  `' G ) ( F `
 x )  <->  E. y
( ( G `  x ) `' G
y  /\  y F
( F `  x
) ) )
3229, 31sylibr 224 . . . . . . . 8  |-  ( ( ( F : A -onto-> B  /\  G : A -onto-> B )  /\  x  e.  A )  ->  ( G `  x )
( F  o.  `' G ) ( F `
 x ) )
3332adantlr 751 . . . . . . 7  |-  ( ( ( ( F : A -onto-> B  /\  G : A -onto-> B )  /\  ( F  o.  `' G
)  =  (  _I  |`  B ) )  /\  x  e.  A )  ->  ( G `  x
) ( F  o.  `' G ) ( F `
 x ) )
34 breq 4655 . . . . . . . 8  |-  ( ( F  o.  `' G
)  =  (  _I  |`  B )  ->  (
( G `  x
) ( F  o.  `' G ) ( F `
 x )  <->  ( G `  x ) (  _I  |`  B ) ( F `
 x ) ) )
3534ad2antlr 763 . . . . . . 7  |-  ( ( ( ( F : A -onto-> B  /\  G : A -onto-> B )  /\  ( F  o.  `' G
)  =  (  _I  |`  B ) )  /\  x  e.  A )  ->  ( ( G `  x ) ( F  o.  `' G ) ( F `  x
)  <->  ( G `  x ) (  _I  |`  B ) ( F `
 x ) ) )
3633, 35mpbid 222 . . . . . 6  |-  ( ( ( ( F : A -onto-> B  /\  G : A -onto-> B )  /\  ( F  o.  `' G
)  =  (  _I  |`  B ) )  /\  x  e.  A )  ->  ( G `  x
) (  _I  |`  B ) ( F `  x
) )
37 fof 6115 . . . . . . . . . 10  |-  ( G : A -onto-> B  ->  G : A --> B )
3837adantl 482 . . . . . . . . 9  |-  ( ( F : A -onto-> B  /\  G : A -onto-> B
)  ->  G : A
--> B )
3938ffvelrnda 6359 . . . . . . . 8  |-  ( ( ( F : A -onto-> B  /\  G : A -onto-> B )  /\  x  e.  A )  ->  ( G `  x )  e.  B )
40 fof 6115 . . . . . . . . . 10  |-  ( F : A -onto-> B  ->  F : A --> B )
4140adantr 481 . . . . . . . . 9  |-  ( ( F : A -onto-> B  /\  G : A -onto-> B
)  ->  F : A
--> B )
4241ffvelrnda 6359 . . . . . . . 8  |-  ( ( ( F : A -onto-> B  /\  G : A -onto-> B )  /\  x  e.  A )  ->  ( F `  x )  e.  B )
43 resieq 5407 . . . . . . . 8  |-  ( ( ( G `  x
)  e.  B  /\  ( F `  x )  e.  B )  -> 
( ( G `  x ) (  _I  |`  B ) ( F `
 x )  <->  ( G `  x )  =  ( F `  x ) ) )
4439, 42, 43syl2anc 693 . . . . . . 7  |-  ( ( ( F : A -onto-> B  /\  G : A -onto-> B )  /\  x  e.  A )  ->  (
( G `  x
) (  _I  |`  B ) ( F `  x
)  <->  ( G `  x )  =  ( F `  x ) ) )
4544adantlr 751 . . . . . 6  |-  ( ( ( ( F : A -onto-> B  /\  G : A -onto-> B )  /\  ( F  o.  `' G
)  =  (  _I  |`  B ) )  /\  x  e.  A )  ->  ( ( G `  x ) (  _I  |`  B ) ( F `
 x )  <->  ( G `  x )  =  ( F `  x ) ) )
4636, 45mpbid 222 . . . . 5  |-  ( ( ( ( F : A -onto-> B  /\  G : A -onto-> B )  /\  ( F  o.  `' G
)  =  (  _I  |`  B ) )  /\  x  e.  A )  ->  ( G `  x
)  =  ( F `
 x ) )
4746eqcomd 2628 . . . 4  |-  ( ( ( ( F : A -onto-> B  /\  G : A -onto-> B )  /\  ( F  o.  `' G
)  =  (  _I  |`  B ) )  /\  x  e.  A )  ->  ( F `  x
)  =  ( G `
 x ) )
488, 10, 47eqfnfvd 6314 . . 3  |-  ( ( ( F : A -onto-> B  /\  G : A -onto-> B )  /\  ( F  o.  `' G
)  =  (  _I  |`  B ) )  ->  F  =  G )
4948ex 450 . 2  |-  ( ( F : A -onto-> B  /\  G : A -onto-> B
)  ->  ( ( F  o.  `' G
)  =  (  _I  |`  B )  ->  F  =  G ) )
506, 49impbid 202 1  |-  ( ( F : A -onto-> B  /\  G : A -onto-> B
)  ->  ( F  =  G  <->  ( F  o.  `' G )  =  (  _I  |`  B )
) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 196    /\ wa 384    = wceq 1483   E.wex 1704    e. wcel 1990   <.cop 4183   class class class wbr 4653    _I cid 5023   `'ccnv 5113    |` cres 5116    o. ccom 5118    Fn wfn 5883   -->wf 5884   -onto->wfo 5886   ` cfv 5888
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ral 2917  df-rex 2918  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-nul 3916  df-if 4087  df-sn 4178  df-pr 4180  df-op 4184  df-uni 4437  df-br 4654  df-opab 4713  df-mpt 4730  df-id 5024  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-fo 5894  df-fv 5896
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator