MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  mulsrmo Structured version   Visualization version   Unicode version

Theorem mulsrmo 9895
Description: There is at most one result from multiplying signed reals. (Contributed by Jim Kingdon, 30-Dec-2019.)
Assertion
Ref Expression
mulsrmo  |-  ( ( A  e.  ( ( P.  X.  P. ) /.  ~R  )  /\  B  e.  ( ( P.  X.  P. ) /.  ~R  )
)  ->  E* z E. w E. v E. u E. t ( ( A  =  [ <. w ,  v >. ]  ~R  /\  B  =  [ <. u ,  t
>. ]  ~R  )  /\  z  =  [ <. (
( w  .P.  u
)  +P.  ( v  .P.  t ) ) ,  ( ( w  .P.  t )  +P.  (
v  .P.  u )
) >. ]  ~R  )
)
Distinct variable groups:    t, A, u, v, w, z    t, B, u, v, w, z

Proof of Theorem mulsrmo
Dummy variables  f 
g  h  q  s are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 enrer 9886 . . . . . . . . . . . . . . . 16  |-  ~R  Er  ( P.  X.  P. )
21a1i 11 . . . . . . . . . . . . . . 15  |-  ( ( ( A  e.  ( ( P.  X.  P. ) /.  ~R  )  /\  B  e.  ( ( P.  X.  P. ) /.  ~R  ) )  /\  (
( A  =  [ <. w ,  v >. ]  ~R  /\  B  =  [ <. u ,  t
>. ]  ~R  )  /\  ( A  =  [ <. s ,  f >. ]  ~R  /\  B  =  [ <. g ,  h >. ]  ~R  ) ) )  ->  ~R  Er  ( P.  X.  P. ) )
3 prsrlem1 9893 . . . . . . . . . . . . . . . 16  |-  ( ( ( A  e.  ( ( P.  X.  P. ) /.  ~R  )  /\  B  e.  ( ( P.  X.  P. ) /.  ~R  ) )  /\  (
( A  =  [ <. w ,  v >. ]  ~R  /\  B  =  [ <. u ,  t
>. ]  ~R  )  /\  ( A  =  [ <. s ,  f >. ]  ~R  /\  B  =  [ <. g ,  h >. ]  ~R  ) ) )  ->  ( (
( ( w  e. 
P.  /\  v  e.  P. )  /\  (
s  e.  P.  /\  f  e.  P. )
)  /\  ( (
u  e.  P.  /\  t  e.  P. )  /\  ( g  e.  P.  /\  h  e.  P. )
) )  /\  (
( w  +P.  f
)  =  ( v  +P.  s )  /\  ( u  +P.  h )  =  ( t  +P.  g ) ) ) )
4 mulcmpblnr 9892 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ( w  e. 
P.  /\  v  e.  P. )  /\  (
s  e.  P.  /\  f  e.  P. )
)  /\  ( (
u  e.  P.  /\  t  e.  P. )  /\  ( g  e.  P.  /\  h  e.  P. )
) )  ->  (
( ( w  +P.  f )  =  ( v  +P.  s )  /\  ( u  +P.  h )  =  ( t  +P.  g ) )  ->  <. ( ( w  .P.  u )  +P.  ( v  .P.  t ) ) ,  ( ( w  .P.  t )  +P.  (
v  .P.  u )
) >.  ~R  <. ( ( s  .P.  g )  +P.  ( f  .P.  h ) ) ,  ( ( s  .P.  h )  +P.  (
f  .P.  g )
) >. ) )
54imp 445 . . . . . . . . . . . . . . . 16  |-  ( ( ( ( ( w  e.  P.  /\  v  e.  P. )  /\  (
s  e.  P.  /\  f  e.  P. )
)  /\  ( (
u  e.  P.  /\  t  e.  P. )  /\  ( g  e.  P.  /\  h  e.  P. )
) )  /\  (
( w  +P.  f
)  =  ( v  +P.  s )  /\  ( u  +P.  h )  =  ( t  +P.  g ) ) )  ->  <. ( ( w  .P.  u )  +P.  ( v  .P.  t
) ) ,  ( ( w  .P.  t
)  +P.  ( v  .P.  u ) ) >.  ~R  <. ( ( s  .P.  g )  +P.  ( f  .P.  h
) ) ,  ( ( s  .P.  h
)  +P.  ( f  .P.  g ) ) >.
)
63, 5syl 17 . . . . . . . . . . . . . . 15  |-  ( ( ( A  e.  ( ( P.  X.  P. ) /.  ~R  )  /\  B  e.  ( ( P.  X.  P. ) /.  ~R  ) )  /\  (
( A  =  [ <. w ,  v >. ]  ~R  /\  B  =  [ <. u ,  t
>. ]  ~R  )  /\  ( A  =  [ <. s ,  f >. ]  ~R  /\  B  =  [ <. g ,  h >. ]  ~R  ) ) )  ->  <. ( ( w  .P.  u )  +P.  ( v  .P.  t ) ) ,  ( ( w  .P.  t )  +P.  (
v  .P.  u )
) >.  ~R  <. ( ( s  .P.  g )  +P.  ( f  .P.  h ) ) ,  ( ( s  .P.  h )  +P.  (
f  .P.  g )
) >. )
72, 6erthi 7793 . . . . . . . . . . . . . 14  |-  ( ( ( A  e.  ( ( P.  X.  P. ) /.  ~R  )  /\  B  e.  ( ( P.  X.  P. ) /.  ~R  ) )  /\  (
( A  =  [ <. w ,  v >. ]  ~R  /\  B  =  [ <. u ,  t
>. ]  ~R  )  /\  ( A  =  [ <. s ,  f >. ]  ~R  /\  B  =  [ <. g ,  h >. ]  ~R  ) ) )  ->  [ <. (
( w  .P.  u
)  +P.  ( v  .P.  t ) ) ,  ( ( w  .P.  t )  +P.  (
v  .P.  u )
) >. ]  ~R  =  [ <. ( ( s  .P.  g )  +P.  ( f  .P.  h
) ) ,  ( ( s  .P.  h
)  +P.  ( f  .P.  g ) ) >. ]  ~R  )
87adantrlr 759 . . . . . . . . . . . . 13  |-  ( ( ( A  e.  ( ( P.  X.  P. ) /.  ~R  )  /\  B  e.  ( ( P.  X.  P. ) /.  ~R  ) )  /\  (
( ( A  =  [ <. w ,  v
>. ]  ~R  /\  B  =  [ <. u ,  t
>. ]  ~R  )  /\  z  =  [ <. (
( w  .P.  u
)  +P.  ( v  .P.  t ) ) ,  ( ( w  .P.  t )  +P.  (
v  .P.  u )
) >. ]  ~R  )  /\  ( A  =  [ <. s ,  f >. ]  ~R  /\  B  =  [ <. g ,  h >. ]  ~R  ) ) )  ->  [ <. (
( w  .P.  u
)  +P.  ( v  .P.  t ) ) ,  ( ( w  .P.  t )  +P.  (
v  .P.  u )
) >. ]  ~R  =  [ <. ( ( s  .P.  g )  +P.  ( f  .P.  h
) ) ,  ( ( s  .P.  h
)  +P.  ( f  .P.  g ) ) >. ]  ~R  )
98adantrrr 761 . . . . . . . . . . . 12  |-  ( ( ( A  e.  ( ( P.  X.  P. ) /.  ~R  )  /\  B  e.  ( ( P.  X.  P. ) /.  ~R  ) )  /\  (
( ( A  =  [ <. w ,  v
>. ]  ~R  /\  B  =  [ <. u ,  t
>. ]  ~R  )  /\  z  =  [ <. (
( w  .P.  u
)  +P.  ( v  .P.  t ) ) ,  ( ( w  .P.  t )  +P.  (
v  .P.  u )
) >. ]  ~R  )  /\  ( ( A  =  [ <. s ,  f
>. ]  ~R  /\  B  =  [ <. g ,  h >. ]  ~R  )  /\  q  =  [ <. (
( s  .P.  g
)  +P.  ( f  .P.  h ) ) ,  ( ( s  .P.  h )  +P.  (
f  .P.  g )
) >. ]  ~R  )
) )  ->  [ <. ( ( w  .P.  u
)  +P.  ( v  .P.  t ) ) ,  ( ( w  .P.  t )  +P.  (
v  .P.  u )
) >. ]  ~R  =  [ <. ( ( s  .P.  g )  +P.  ( f  .P.  h
) ) ,  ( ( s  .P.  h
)  +P.  ( f  .P.  g ) ) >. ]  ~R  )
10 simprlr 803 . . . . . . . . . . . 12  |-  ( ( ( A  e.  ( ( P.  X.  P. ) /.  ~R  )  /\  B  e.  ( ( P.  X.  P. ) /.  ~R  ) )  /\  (
( ( A  =  [ <. w ,  v
>. ]  ~R  /\  B  =  [ <. u ,  t
>. ]  ~R  )  /\  z  =  [ <. (
( w  .P.  u
)  +P.  ( v  .P.  t ) ) ,  ( ( w  .P.  t )  +P.  (
v  .P.  u )
) >. ]  ~R  )  /\  ( ( A  =  [ <. s ,  f
>. ]  ~R  /\  B  =  [ <. g ,  h >. ]  ~R  )  /\  q  =  [ <. (
( s  .P.  g
)  +P.  ( f  .P.  h ) ) ,  ( ( s  .P.  h )  +P.  (
f  .P.  g )
) >. ]  ~R  )
) )  ->  z  =  [ <. ( ( w  .P.  u )  +P.  ( v  .P.  t
) ) ,  ( ( w  .P.  t
)  +P.  ( v  .P.  u ) ) >. ]  ~R  )
11 simprrr 805 . . . . . . . . . . . 12  |-  ( ( ( A  e.  ( ( P.  X.  P. ) /.  ~R  )  /\  B  e.  ( ( P.  X.  P. ) /.  ~R  ) )  /\  (
( ( A  =  [ <. w ,  v
>. ]  ~R  /\  B  =  [ <. u ,  t
>. ]  ~R  )  /\  z  =  [ <. (
( w  .P.  u
)  +P.  ( v  .P.  t ) ) ,  ( ( w  .P.  t )  +P.  (
v  .P.  u )
) >. ]  ~R  )  /\  ( ( A  =  [ <. s ,  f
>. ]  ~R  /\  B  =  [ <. g ,  h >. ]  ~R  )  /\  q  =  [ <. (
( s  .P.  g
)  +P.  ( f  .P.  h ) ) ,  ( ( s  .P.  h )  +P.  (
f  .P.  g )
) >. ]  ~R  )
) )  ->  q  =  [ <. ( ( s  .P.  g )  +P.  ( f  .P.  h
) ) ,  ( ( s  .P.  h
)  +P.  ( f  .P.  g ) ) >. ]  ~R  )
129, 10, 113eqtr4d 2666 . . . . . . . . . . 11  |-  ( ( ( A  e.  ( ( P.  X.  P. ) /.  ~R  )  /\  B  e.  ( ( P.  X.  P. ) /.  ~R  ) )  /\  (
( ( A  =  [ <. w ,  v
>. ]  ~R  /\  B  =  [ <. u ,  t
>. ]  ~R  )  /\  z  =  [ <. (
( w  .P.  u
)  +P.  ( v  .P.  t ) ) ,  ( ( w  .P.  t )  +P.  (
v  .P.  u )
) >. ]  ~R  )  /\  ( ( A  =  [ <. s ,  f
>. ]  ~R  /\  B  =  [ <. g ,  h >. ]  ~R  )  /\  q  =  [ <. (
( s  .P.  g
)  +P.  ( f  .P.  h ) ) ,  ( ( s  .P.  h )  +P.  (
f  .P.  g )
) >. ]  ~R  )
) )  ->  z  =  q )
1312expr 643 . . . . . . . . . 10  |-  ( ( ( A  e.  ( ( P.  X.  P. ) /.  ~R  )  /\  B  e.  ( ( P.  X.  P. ) /.  ~R  ) )  /\  (
( A  =  [ <. w ,  v >. ]  ~R  /\  B  =  [ <. u ,  t
>. ]  ~R  )  /\  z  =  [ <. (
( w  .P.  u
)  +P.  ( v  .P.  t ) ) ,  ( ( w  .P.  t )  +P.  (
v  .P.  u )
) >. ]  ~R  )
)  ->  ( (
( A  =  [ <. s ,  f >. ]  ~R  /\  B  =  [ <. g ,  h >. ]  ~R  )  /\  q  =  [ <. (
( s  .P.  g
)  +P.  ( f  .P.  h ) ) ,  ( ( s  .P.  h )  +P.  (
f  .P.  g )
) >. ]  ~R  )  ->  z  =  q ) )
1413exlimdvv 1862 . . . . . . . . 9  |-  ( ( ( A  e.  ( ( P.  X.  P. ) /.  ~R  )  /\  B  e.  ( ( P.  X.  P. ) /.  ~R  ) )  /\  (
( A  =  [ <. w ,  v >. ]  ~R  /\  B  =  [ <. u ,  t
>. ]  ~R  )  /\  z  =  [ <. (
( w  .P.  u
)  +P.  ( v  .P.  t ) ) ,  ( ( w  .P.  t )  +P.  (
v  .P.  u )
) >. ]  ~R  )
)  ->  ( E. g E. h ( ( A  =  [ <. s ,  f >. ]  ~R  /\  B  =  [ <. g ,  h >. ]  ~R  )  /\  q  =  [ <. ( ( s  .P.  g )  +P.  (
f  .P.  h )
) ,  ( ( s  .P.  h )  +P.  ( f  .P.  g ) ) >. ]  ~R  )  ->  z  =  q ) )
1514exlimdvv 1862 . . . . . . . 8  |-  ( ( ( A  e.  ( ( P.  X.  P. ) /.  ~R  )  /\  B  e.  ( ( P.  X.  P. ) /.  ~R  ) )  /\  (
( A  =  [ <. w ,  v >. ]  ~R  /\  B  =  [ <. u ,  t
>. ]  ~R  )  /\  z  =  [ <. (
( w  .P.  u
)  +P.  ( v  .P.  t ) ) ,  ( ( w  .P.  t )  +P.  (
v  .P.  u )
) >. ]  ~R  )
)  ->  ( E. s E. f E. g E. h ( ( A  =  [ <. s ,  f >. ]  ~R  /\  B  =  [ <. g ,  h >. ]  ~R  )  /\  q  =  [ <. ( ( s  .P.  g )  +P.  (
f  .P.  h )
) ,  ( ( s  .P.  h )  +P.  ( f  .P.  g ) ) >. ]  ~R  )  ->  z  =  q ) )
1615ex 450 . . . . . . 7  |-  ( ( A  e.  ( ( P.  X.  P. ) /.  ~R  )  /\  B  e.  ( ( P.  X.  P. ) /.  ~R  )
)  ->  ( (
( A  =  [ <. w ,  v >. ]  ~R  /\  B  =  [ <. u ,  t
>. ]  ~R  )  /\  z  =  [ <. (
( w  .P.  u
)  +P.  ( v  .P.  t ) ) ,  ( ( w  .P.  t )  +P.  (
v  .P.  u )
) >. ]  ~R  )  ->  ( E. s E. f E. g E. h ( ( A  =  [ <. s ,  f >. ]  ~R  /\  B  =  [ <. g ,  h >. ]  ~R  )  /\  q  =  [ <. ( ( s  .P.  g )  +P.  (
f  .P.  h )
) ,  ( ( s  .P.  h )  +P.  ( f  .P.  g ) ) >. ]  ~R  )  ->  z  =  q ) ) )
1716exlimdvv 1862 . . . . . 6  |-  ( ( A  e.  ( ( P.  X.  P. ) /.  ~R  )  /\  B  e.  ( ( P.  X.  P. ) /.  ~R  )
)  ->  ( E. u E. t ( ( A  =  [ <. w ,  v >. ]  ~R  /\  B  =  [ <. u ,  t >. ]  ~R  )  /\  z  =  [ <. ( ( w  .P.  u )  +P.  (
v  .P.  t )
) ,  ( ( w  .P.  t )  +P.  ( v  .P.  u ) ) >. ]  ~R  )  ->  ( E. s E. f E. g E. h ( ( A  =  [ <. s ,  f >. ]  ~R  /\  B  =  [ <. g ,  h >. ]  ~R  )  /\  q  =  [ <. (
( s  .P.  g
)  +P.  ( f  .P.  h ) ) ,  ( ( s  .P.  h )  +P.  (
f  .P.  g )
) >. ]  ~R  )  ->  z  =  q ) ) )
1817exlimdvv 1862 . . . . 5  |-  ( ( A  e.  ( ( P.  X.  P. ) /.  ~R  )  /\  B  e.  ( ( P.  X.  P. ) /.  ~R  )
)  ->  ( E. w E. v E. u E. t ( ( A  =  [ <. w ,  v >. ]  ~R  /\  B  =  [ <. u ,  t >. ]  ~R  )  /\  z  =  [ <. ( ( w  .P.  u )  +P.  (
v  .P.  t )
) ,  ( ( w  .P.  t )  +P.  ( v  .P.  u ) ) >. ]  ~R  )  ->  ( E. s E. f E. g E. h ( ( A  =  [ <. s ,  f >. ]  ~R  /\  B  =  [ <. g ,  h >. ]  ~R  )  /\  q  =  [ <. (
( s  .P.  g
)  +P.  ( f  .P.  h ) ) ,  ( ( s  .P.  h )  +P.  (
f  .P.  g )
) >. ]  ~R  )  ->  z  =  q ) ) )
1918impd 447 . . . 4  |-  ( ( A  e.  ( ( P.  X.  P. ) /.  ~R  )  /\  B  e.  ( ( P.  X.  P. ) /.  ~R  )
)  ->  ( ( E. w E. v E. u E. t ( ( A  =  [ <. w ,  v >. ]  ~R  /\  B  =  [ <. u ,  t
>. ]  ~R  )  /\  z  =  [ <. (
( w  .P.  u
)  +P.  ( v  .P.  t ) ) ,  ( ( w  .P.  t )  +P.  (
v  .P.  u )
) >. ]  ~R  )  /\  E. s E. f E. g E. h ( ( A  =  [ <. s ,  f >. ]  ~R  /\  B  =  [ <. g ,  h >. ]  ~R  )  /\  q  =  [ <. (
( s  .P.  g
)  +P.  ( f  .P.  h ) ) ,  ( ( s  .P.  h )  +P.  (
f  .P.  g )
) >. ]  ~R  )
)  ->  z  =  q ) )
2019alrimivv 1856 . . 3  |-  ( ( A  e.  ( ( P.  X.  P. ) /.  ~R  )  /\  B  e.  ( ( P.  X.  P. ) /.  ~R  )
)  ->  A. z A. q ( ( E. w E. v E. u E. t ( ( A  =  [ <. w ,  v >. ]  ~R  /\  B  =  [ <. u ,  t
>. ]  ~R  )  /\  z  =  [ <. (
( w  .P.  u
)  +P.  ( v  .P.  t ) ) ,  ( ( w  .P.  t )  +P.  (
v  .P.  u )
) >. ]  ~R  )  /\  E. s E. f E. g E. h ( ( A  =  [ <. s ,  f >. ]  ~R  /\  B  =  [ <. g ,  h >. ]  ~R  )  /\  q  =  [ <. (
( s  .P.  g
)  +P.  ( f  .P.  h ) ) ,  ( ( s  .P.  h )  +P.  (
f  .P.  g )
) >. ]  ~R  )
)  ->  z  =  q ) )
21 opeq12 4404 . . . . . . . . . . 11  |-  ( ( w  =  s  /\  v  =  f )  -> 
<. w ,  v >.  =  <. s ,  f
>. )
2221eceq1d 7783 . . . . . . . . . 10  |-  ( ( w  =  s  /\  v  =  f )  ->  [ <. w ,  v
>. ]  ~R  =  [ <. s ,  f >. ]  ~R  )
2322eqeq2d 2632 . . . . . . . . 9  |-  ( ( w  =  s  /\  v  =  f )  ->  ( A  =  [ <. w ,  v >. ]  ~R  <->  A  =  [ <. s ,  f >. ]  ~R  ) )
2423anbi1d 741 . . . . . . . 8  |-  ( ( w  =  s  /\  v  =  f )  ->  ( ( A  =  [ <. w ,  v
>. ]  ~R  /\  B  =  [ <. u ,  t
>. ]  ~R  )  <->  ( A  =  [ <. s ,  f
>. ]  ~R  /\  B  =  [ <. u ,  t
>. ]  ~R  ) ) )
25 simpl 473 . . . . . . . . . . . . 13  |-  ( ( w  =  s  /\  v  =  f )  ->  w  =  s )
2625oveq1d 6665 . . . . . . . . . . . 12  |-  ( ( w  =  s  /\  v  =  f )  ->  ( w  .P.  u
)  =  ( s  .P.  u ) )
27 simpr 477 . . . . . . . . . . . . 13  |-  ( ( w  =  s  /\  v  =  f )  ->  v  =  f )
2827oveq1d 6665 . . . . . . . . . . . 12  |-  ( ( w  =  s  /\  v  =  f )  ->  ( v  .P.  t
)  =  ( f  .P.  t ) )
2926, 28oveq12d 6668 . . . . . . . . . . 11  |-  ( ( w  =  s  /\  v  =  f )  ->  ( ( w  .P.  u )  +P.  (
v  .P.  t )
)  =  ( ( s  .P.  u )  +P.  ( f  .P.  t ) ) )
3025oveq1d 6665 . . . . . . . . . . . 12  |-  ( ( w  =  s  /\  v  =  f )  ->  ( w  .P.  t
)  =  ( s  .P.  t ) )
3127oveq1d 6665 . . . . . . . . . . . 12  |-  ( ( w  =  s  /\  v  =  f )  ->  ( v  .P.  u
)  =  ( f  .P.  u ) )
3230, 31oveq12d 6668 . . . . . . . . . . 11  |-  ( ( w  =  s  /\  v  =  f )  ->  ( ( w  .P.  t )  +P.  (
v  .P.  u )
)  =  ( ( s  .P.  t )  +P.  ( f  .P.  u ) ) )
3329, 32opeq12d 4410 . . . . . . . . . 10  |-  ( ( w  =  s  /\  v  =  f )  -> 
<. ( ( w  .P.  u )  +P.  (
v  .P.  t )
) ,  ( ( w  .P.  t )  +P.  ( v  .P.  u ) ) >.  =  <. ( ( s  .P.  u )  +P.  ( f  .P.  t
) ) ,  ( ( s  .P.  t
)  +P.  ( f  .P.  u ) ) >.
)
3433eceq1d 7783 . . . . . . . . 9  |-  ( ( w  =  s  /\  v  =  f )  ->  [ <. ( ( w  .P.  u )  +P.  ( v  .P.  t
) ) ,  ( ( w  .P.  t
)  +P.  ( v  .P.  u ) ) >. ]  ~R  =  [ <. ( ( s  .P.  u
)  +P.  ( f  .P.  t ) ) ,  ( ( s  .P.  t )  +P.  (
f  .P.  u )
) >. ]  ~R  )
3534eqeq2d 2632 . . . . . . . 8  |-  ( ( w  =  s  /\  v  =  f )  ->  ( q  =  [ <. ( ( w  .P.  u )  +P.  (
v  .P.  t )
) ,  ( ( w  .P.  t )  +P.  ( v  .P.  u ) ) >. ]  ~R  <->  q  =  [ <. ( ( s  .P.  u )  +P.  (
f  .P.  t )
) ,  ( ( s  .P.  t )  +P.  ( f  .P.  u ) ) >. ]  ~R  ) )
3624, 35anbi12d 747 . . . . . . 7  |-  ( ( w  =  s  /\  v  =  f )  ->  ( ( ( A  =  [ <. w ,  v >. ]  ~R  /\  B  =  [ <. u ,  t >. ]  ~R  )  /\  q  =  [ <. ( ( w  .P.  u )  +P.  (
v  .P.  t )
) ,  ( ( w  .P.  t )  +P.  ( v  .P.  u ) ) >. ]  ~R  )  <->  ( ( A  =  [ <. s ,  f >. ]  ~R  /\  B  =  [ <. u ,  t >. ]  ~R  )  /\  q  =  [ <. ( ( s  .P.  u )  +P.  (
f  .P.  t )
) ,  ( ( s  .P.  t )  +P.  ( f  .P.  u ) ) >. ]  ~R  ) ) )
37 opeq12 4404 . . . . . . . . . . 11  |-  ( ( u  =  g  /\  t  =  h )  -> 
<. u ,  t >.  =  <. g ,  h >. )
3837eceq1d 7783 . . . . . . . . . 10  |-  ( ( u  =  g  /\  t  =  h )  ->  [ <. u ,  t
>. ]  ~R  =  [ <. g ,  h >. ]  ~R  )
3938eqeq2d 2632 . . . . . . . . 9  |-  ( ( u  =  g  /\  t  =  h )  ->  ( B  =  [ <. u ,  t >. ]  ~R  <->  B  =  [ <. g ,  h >. ]  ~R  ) )
4039anbi2d 740 . . . . . . . 8  |-  ( ( u  =  g  /\  t  =  h )  ->  ( ( A  =  [ <. s ,  f
>. ]  ~R  /\  B  =  [ <. u ,  t
>. ]  ~R  )  <->  ( A  =  [ <. s ,  f
>. ]  ~R  /\  B  =  [ <. g ,  h >. ]  ~R  ) ) )
41 simpl 473 . . . . . . . . . . . . 13  |-  ( ( u  =  g  /\  t  =  h )  ->  u  =  g )
4241oveq2d 6666 . . . . . . . . . . . 12  |-  ( ( u  =  g  /\  t  =  h )  ->  ( s  .P.  u
)  =  ( s  .P.  g ) )
43 simpr 477 . . . . . . . . . . . . 13  |-  ( ( u  =  g  /\  t  =  h )  ->  t  =  h )
4443oveq2d 6666 . . . . . . . . . . . 12  |-  ( ( u  =  g  /\  t  =  h )  ->  ( f  .P.  t
)  =  ( f  .P.  h ) )
4542, 44oveq12d 6668 . . . . . . . . . . 11  |-  ( ( u  =  g  /\  t  =  h )  ->  ( ( s  .P.  u )  +P.  (
f  .P.  t )
)  =  ( ( s  .P.  g )  +P.  ( f  .P.  h ) ) )
4643oveq2d 6666 . . . . . . . . . . . 12  |-  ( ( u  =  g  /\  t  =  h )  ->  ( s  .P.  t
)  =  ( s  .P.  h ) )
4741oveq2d 6666 . . . . . . . . . . . 12  |-  ( ( u  =  g  /\  t  =  h )  ->  ( f  .P.  u
)  =  ( f  .P.  g ) )
4846, 47oveq12d 6668 . . . . . . . . . . 11  |-  ( ( u  =  g  /\  t  =  h )  ->  ( ( s  .P.  t )  +P.  (
f  .P.  u )
)  =  ( ( s  .P.  h )  +P.  ( f  .P.  g ) ) )
4945, 48opeq12d 4410 . . . . . . . . . 10  |-  ( ( u  =  g  /\  t  =  h )  -> 
<. ( ( s  .P.  u )  +P.  (
f  .P.  t )
) ,  ( ( s  .P.  t )  +P.  ( f  .P.  u ) ) >.  =  <. ( ( s  .P.  g )  +P.  ( f  .P.  h
) ) ,  ( ( s  .P.  h
)  +P.  ( f  .P.  g ) ) >.
)
5049eceq1d 7783 . . . . . . . . 9  |-  ( ( u  =  g  /\  t  =  h )  ->  [ <. ( ( s  .P.  u )  +P.  ( f  .P.  t
) ) ,  ( ( s  .P.  t
)  +P.  ( f  .P.  u ) ) >. ]  ~R  =  [ <. ( ( s  .P.  g
)  +P.  ( f  .P.  h ) ) ,  ( ( s  .P.  h )  +P.  (
f  .P.  g )
) >. ]  ~R  )
5150eqeq2d 2632 . . . . . . . 8  |-  ( ( u  =  g  /\  t  =  h )  ->  ( q  =  [ <. ( ( s  .P.  u )  +P.  (
f  .P.  t )
) ,  ( ( s  .P.  t )  +P.  ( f  .P.  u ) ) >. ]  ~R  <->  q  =  [ <. ( ( s  .P.  g )  +P.  (
f  .P.  h )
) ,  ( ( s  .P.  h )  +P.  ( f  .P.  g ) ) >. ]  ~R  ) )
5240, 51anbi12d 747 . . . . . . 7  |-  ( ( u  =  g  /\  t  =  h )  ->  ( ( ( A  =  [ <. s ,  f >. ]  ~R  /\  B  =  [ <. u ,  t >. ]  ~R  )  /\  q  =  [ <. ( ( s  .P.  u )  +P.  (
f  .P.  t )
) ,  ( ( s  .P.  t )  +P.  ( f  .P.  u ) ) >. ]  ~R  )  <->  ( ( A  =  [ <. s ,  f >. ]  ~R  /\  B  =  [ <. g ,  h >. ]  ~R  )  /\  q  =  [ <. ( ( s  .P.  g )  +P.  (
f  .P.  h )
) ,  ( ( s  .P.  h )  +P.  ( f  .P.  g ) ) >. ]  ~R  ) ) )
5336, 52cbvex4v 2289 . . . . . 6  |-  ( E. w E. v E. u E. t ( ( A  =  [ <. w ,  v >. ]  ~R  /\  B  =  [ <. u ,  t
>. ]  ~R  )  /\  q  =  [ <. (
( w  .P.  u
)  +P.  ( v  .P.  t ) ) ,  ( ( w  .P.  t )  +P.  (
v  .P.  u )
) >. ]  ~R  )  <->  E. s E. f E. g E. h ( ( A  =  [ <. s ,  f >. ]  ~R  /\  B  =  [ <. g ,  h >. ]  ~R  )  /\  q  =  [ <. (
( s  .P.  g
)  +P.  ( f  .P.  h ) ) ,  ( ( s  .P.  h )  +P.  (
f  .P.  g )
) >. ]  ~R  )
)
5453anbi2i 730 . . . . 5  |-  ( ( E. w E. v E. u E. t ( ( A  =  [ <. w ,  v >. ]  ~R  /\  B  =  [ <. u ,  t
>. ]  ~R  )  /\  z  =  [ <. (
( w  .P.  u
)  +P.  ( v  .P.  t ) ) ,  ( ( w  .P.  t )  +P.  (
v  .P.  u )
) >. ]  ~R  )  /\  E. w E. v E. u E. t ( ( A  =  [ <. w ,  v >. ]  ~R  /\  B  =  [ <. u ,  t
>. ]  ~R  )  /\  q  =  [ <. (
( w  .P.  u
)  +P.  ( v  .P.  t ) ) ,  ( ( w  .P.  t )  +P.  (
v  .P.  u )
) >. ]  ~R  )
)  <->  ( E. w E. v E. u E. t ( ( A  =  [ <. w ,  v >. ]  ~R  /\  B  =  [ <. u ,  t >. ]  ~R  )  /\  z  =  [ <. ( ( w  .P.  u )  +P.  (
v  .P.  t )
) ,  ( ( w  .P.  t )  +P.  ( v  .P.  u ) ) >. ]  ~R  )  /\  E. s E. f E. g E. h ( ( A  =  [ <. s ,  f >. ]  ~R  /\  B  =  [ <. g ,  h >. ]  ~R  )  /\  q  =  [ <. ( ( s  .P.  g )  +P.  (
f  .P.  h )
) ,  ( ( s  .P.  h )  +P.  ( f  .P.  g ) ) >. ]  ~R  ) ) )
5554imbi1i 339 . . . 4  |-  ( ( ( E. w E. v E. u E. t
( ( A  =  [ <. w ,  v
>. ]  ~R  /\  B  =  [ <. u ,  t
>. ]  ~R  )  /\  z  =  [ <. (
( w  .P.  u
)  +P.  ( v  .P.  t ) ) ,  ( ( w  .P.  t )  +P.  (
v  .P.  u )
) >. ]  ~R  )  /\  E. w E. v E. u E. t ( ( A  =  [ <. w ,  v >. ]  ~R  /\  B  =  [ <. u ,  t
>. ]  ~R  )  /\  q  =  [ <. (
( w  .P.  u
)  +P.  ( v  .P.  t ) ) ,  ( ( w  .P.  t )  +P.  (
v  .P.  u )
) >. ]  ~R  )
)  ->  z  =  q )  <->  ( ( E. w E. v E. u E. t ( ( A  =  [ <. w ,  v >. ]  ~R  /\  B  =  [ <. u ,  t
>. ]  ~R  )  /\  z  =  [ <. (
( w  .P.  u
)  +P.  ( v  .P.  t ) ) ,  ( ( w  .P.  t )  +P.  (
v  .P.  u )
) >. ]  ~R  )  /\  E. s E. f E. g E. h ( ( A  =  [ <. s ,  f >. ]  ~R  /\  B  =  [ <. g ,  h >. ]  ~R  )  /\  q  =  [ <. (
( s  .P.  g
)  +P.  ( f  .P.  h ) ) ,  ( ( s  .P.  h )  +P.  (
f  .P.  g )
) >. ]  ~R  )
)  ->  z  =  q ) )
56552albii 1748 . . 3  |-  ( A. z A. q ( ( E. w E. v E. u E. t ( ( A  =  [ <. w ,  v >. ]  ~R  /\  B  =  [ <. u ,  t
>. ]  ~R  )  /\  z  =  [ <. (
( w  .P.  u
)  +P.  ( v  .P.  t ) ) ,  ( ( w  .P.  t )  +P.  (
v  .P.  u )
) >. ]  ~R  )  /\  E. w E. v E. u E. t ( ( A  =  [ <. w ,  v >. ]  ~R  /\  B  =  [ <. u ,  t
>. ]  ~R  )  /\  q  =  [ <. (
( w  .P.  u
)  +P.  ( v  .P.  t ) ) ,  ( ( w  .P.  t )  +P.  (
v  .P.  u )
) >. ]  ~R  )
)  ->  z  =  q )  <->  A. z A. q ( ( E. w E. v E. u E. t ( ( A  =  [ <. w ,  v >. ]  ~R  /\  B  =  [ <. u ,  t
>. ]  ~R  )  /\  z  =  [ <. (
( w  .P.  u
)  +P.  ( v  .P.  t ) ) ,  ( ( w  .P.  t )  +P.  (
v  .P.  u )
) >. ]  ~R  )  /\  E. s E. f E. g E. h ( ( A  =  [ <. s ,  f >. ]  ~R  /\  B  =  [ <. g ,  h >. ]  ~R  )  /\  q  =  [ <. (
( s  .P.  g
)  +P.  ( f  .P.  h ) ) ,  ( ( s  .P.  h )  +P.  (
f  .P.  g )
) >. ]  ~R  )
)  ->  z  =  q ) )
5720, 56sylibr 224 . 2  |-  ( ( A  e.  ( ( P.  X.  P. ) /.  ~R  )  /\  B  e.  ( ( P.  X.  P. ) /.  ~R  )
)  ->  A. z A. q ( ( E. w E. v E. u E. t ( ( A  =  [ <. w ,  v >. ]  ~R  /\  B  =  [ <. u ,  t
>. ]  ~R  )  /\  z  =  [ <. (
( w  .P.  u
)  +P.  ( v  .P.  t ) ) ,  ( ( w  .P.  t )  +P.  (
v  .P.  u )
) >. ]  ~R  )  /\  E. w E. v E. u E. t ( ( A  =  [ <. w ,  v >. ]  ~R  /\  B  =  [ <. u ,  t
>. ]  ~R  )  /\  q  =  [ <. (
( w  .P.  u
)  +P.  ( v  .P.  t ) ) ,  ( ( w  .P.  t )  +P.  (
v  .P.  u )
) >. ]  ~R  )
)  ->  z  =  q ) )
58 eqeq1 2626 . . . . 5  |-  ( z  =  q  ->  (
z  =  [ <. ( ( w  .P.  u
)  +P.  ( v  .P.  t ) ) ,  ( ( w  .P.  t )  +P.  (
v  .P.  u )
) >. ]  ~R  <->  q  =  [ <. ( ( w  .P.  u )  +P.  ( v  .P.  t
) ) ,  ( ( w  .P.  t
)  +P.  ( v  .P.  u ) ) >. ]  ~R  ) )
5958anbi2d 740 . . . 4  |-  ( z  =  q  ->  (
( ( A  =  [ <. w ,  v
>. ]  ~R  /\  B  =  [ <. u ,  t
>. ]  ~R  )  /\  z  =  [ <. (
( w  .P.  u
)  +P.  ( v  .P.  t ) ) ,  ( ( w  .P.  t )  +P.  (
v  .P.  u )
) >. ]  ~R  )  <->  ( ( A  =  [ <. w ,  v >. ]  ~R  /\  B  =  [ <. u ,  t
>. ]  ~R  )  /\  q  =  [ <. (
( w  .P.  u
)  +P.  ( v  .P.  t ) ) ,  ( ( w  .P.  t )  +P.  (
v  .P.  u )
) >. ]  ~R  )
) )
60594exbidv 1854 . . 3  |-  ( z  =  q  ->  ( E. w E. v E. u E. t ( ( A  =  [ <. w ,  v >. ]  ~R  /\  B  =  [ <. u ,  t
>. ]  ~R  )  /\  z  =  [ <. (
( w  .P.  u
)  +P.  ( v  .P.  t ) ) ,  ( ( w  .P.  t )  +P.  (
v  .P.  u )
) >. ]  ~R  )  <->  E. w E. v E. u E. t ( ( A  =  [ <. w ,  v >. ]  ~R  /\  B  =  [ <. u ,  t
>. ]  ~R  )  /\  q  =  [ <. (
( w  .P.  u
)  +P.  ( v  .P.  t ) ) ,  ( ( w  .P.  t )  +P.  (
v  .P.  u )
) >. ]  ~R  )
) )
6160mo4 2517 . 2  |-  ( E* z E. w E. v E. u E. t
( ( A  =  [ <. w ,  v
>. ]  ~R  /\  B  =  [ <. u ,  t
>. ]  ~R  )  /\  z  =  [ <. (
( w  .P.  u
)  +P.  ( v  .P.  t ) ) ,  ( ( w  .P.  t )  +P.  (
v  .P.  u )
) >. ]  ~R  )  <->  A. z A. q ( ( E. w E. v E. u E. t
( ( A  =  [ <. w ,  v
>. ]  ~R  /\  B  =  [ <. u ,  t
>. ]  ~R  )  /\  z  =  [ <. (
( w  .P.  u
)  +P.  ( v  .P.  t ) ) ,  ( ( w  .P.  t )  +P.  (
v  .P.  u )
) >. ]  ~R  )  /\  E. w E. v E. u E. t ( ( A  =  [ <. w ,  v >. ]  ~R  /\  B  =  [ <. u ,  t
>. ]  ~R  )  /\  q  =  [ <. (
( w  .P.  u
)  +P.  ( v  .P.  t ) ) ,  ( ( w  .P.  t )  +P.  (
v  .P.  u )
) >. ]  ~R  )
)  ->  z  =  q ) )
6257, 61sylibr 224 1  |-  ( ( A  e.  ( ( P.  X.  P. ) /.  ~R  )  /\  B  e.  ( ( P.  X.  P. ) /.  ~R  )
)  ->  E* z E. w E. v E. u E. t ( ( A  =  [ <. w ,  v >. ]  ~R  /\  B  =  [ <. u ,  t
>. ]  ~R  )  /\  z  =  [ <. (
( w  .P.  u
)  +P.  ( v  .P.  t ) ) ,  ( ( w  .P.  t )  +P.  (
v  .P.  u )
) >. ]  ~R  )
)
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    /\ wa 384   A.wal 1481    = wceq 1483   E.wex 1704    e. wcel 1990   E*wmo 2471   <.cop 4183   class class class wbr 4653    X. cxp 5112  (class class class)co 6650    Er wer 7739   [cec 7740   /.cqs 7741   P.cnp 9681    +P. cpp 9683    .P. cmp 9684    ~R cer 9686
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-inf2 8538
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-ral 2917  df-rex 2918  df-reu 2919  df-rmo 2920  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-int 4476  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-pred 5680  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-om 7066  df-1st 7168  df-2nd 7169  df-wrecs 7407  df-recs 7468  df-rdg 7506  df-1o 7560  df-oadd 7564  df-omul 7565  df-er 7742  df-ec 7744  df-qs 7748  df-ni 9694  df-pli 9695  df-mi 9696  df-lti 9697  df-plpq 9730  df-mpq 9731  df-ltpq 9732  df-enq 9733  df-nq 9734  df-erq 9735  df-plq 9736  df-mq 9737  df-1nq 9738  df-rq 9739  df-ltnq 9740  df-np 9803  df-plp 9805  df-mp 9806  df-ltp 9807  df-enr 9877
This theorem is referenced by:  mulsrpr  9897
  Copyright terms: Public domain W3C validator