![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > ancomsd | Structured version Visualization version Unicode version |
Description: Deduction commuting conjunction in antecedent. (Contributed by NM, 12-Dec-2004.) |
Ref | Expression |
---|---|
ancomsd.1 |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Ref | Expression |
---|---|
ancomsd |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ancom 466 |
. 2
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | |
2 | ancomsd.1 |
. 2
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | |
3 | 1, 2 | syl5bi 232 |
1
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Colors of variables: wff setvar class |
Syntax hints: ![]() ![]() |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 197 df-an 386 |
This theorem is referenced by: sylan2d 499 mpand 711 anabsi6 859 ralcom2 3104 ralxfrdOLD 4880 somo 5069 wereu2 5111 poirr2 5520 smoel 7457 cfub 9071 cofsmo 9091 grudomon 9639 axpre-sup 9990 leltadd 10512 lemul12b 10880 lbzbi 11776 injresinj 12589 abslt 14054 absle 14055 o1lo1 14268 o1co 14317 rlimno1 14384 znnenlem 14940 dvdssub2 15023 lublecllem 16988 f1omvdco2 17868 ptpjpre1 21374 iocopnst 22739 ovolicc2lem4 23288 itg2le 23506 ulmcau 24149 cxpeq0 24424 pntrsumbnd2 25256 cvcon3 29143 atexch 29240 abfmpeld 29454 wsuclem 31773 wsuclemOLD 31774 btwntriv2 32119 btwnexch3 32127 isbasisrelowllem1 33203 isbasisrelowllem2 33204 relowlssretop 33211 finxpsuclem 33234 finixpnum 33394 fin2solem 33395 ltflcei 33397 poimirlem27 33436 itg2addnclem 33461 unirep 33507 prter2 34166 cvrcon3b 34564 incssnn0 37274 eldioph4b 37375 fphpdo 37381 pellexlem5 37397 pm14.24 38633 icceuelpart 41372 goldbachthlem2 41458 gbegt5 41649 prsprel 41737 sprsymrelfolem2 41743 aacllem 42547 |
Copyright terms: Public domain | W3C validator |