MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ablnsg Structured version   Visualization version   Unicode version

Theorem ablnsg 18250
Description: Every subgroup of an abelian group is normal. (Contributed by Mario Carneiro, 14-Jun-2015.)
Assertion
Ref Expression
ablnsg  |-  ( G  e.  Abel  ->  (NrmSGrp `  G
)  =  (SubGrp `  G ) )

Proof of Theorem ablnsg
Dummy variables  x  y  z are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eqid 2622 . . . . . . 7  |-  ( Base `  G )  =  (
Base `  G )
2 eqid 2622 . . . . . . 7  |-  ( +g  `  G )  =  ( +g  `  G )
31, 2ablcom 18210 . . . . . 6  |-  ( ( G  e.  Abel  /\  y  e.  ( Base `  G
)  /\  z  e.  ( Base `  G )
)  ->  ( y
( +g  `  G ) z )  =  ( z ( +g  `  G
) y ) )
433expb 1266 . . . . 5  |-  ( ( G  e.  Abel  /\  (
y  e.  ( Base `  G )  /\  z  e.  ( Base `  G
) ) )  -> 
( y ( +g  `  G ) z )  =  ( z ( +g  `  G ) y ) )
54eleq1d 2686 . . . 4  |-  ( ( G  e.  Abel  /\  (
y  e.  ( Base `  G )  /\  z  e.  ( Base `  G
) ) )  -> 
( ( y ( +g  `  G ) z )  e.  x  <->  ( z ( +g  `  G
) y )  e.  x ) )
65ralrimivva 2971 . . 3  |-  ( G  e.  Abel  ->  A. y  e.  ( Base `  G
) A. z  e.  ( Base `  G
) ( ( y ( +g  `  G
) z )  e.  x  <->  ( z ( +g  `  G ) y )  e.  x
) )
71, 2isnsg 17623 . . . 4  |-  ( x  e.  (NrmSGrp `  G
)  <->  ( x  e.  (SubGrp `  G )  /\  A. y  e.  (
Base `  G ) A. z  e.  ( Base `  G ) ( ( y ( +g  `  G ) z )  e.  x  <->  ( z
( +g  `  G ) y )  e.  x
) ) )
87rbaib 947 . . 3  |-  ( A. y  e.  ( Base `  G ) A. z  e.  ( Base `  G
) ( ( y ( +g  `  G
) z )  e.  x  <->  ( z ( +g  `  G ) y )  e.  x
)  ->  ( x  e.  (NrmSGrp `  G )  <->  x  e.  (SubGrp `  G
) ) )
96, 8syl 17 . 2  |-  ( G  e.  Abel  ->  ( x  e.  (NrmSGrp `  G
)  <->  x  e.  (SubGrp `  G ) ) )
109eqrdv 2620 1  |-  ( G  e.  Abel  ->  (NrmSGrp `  G
)  =  (SubGrp `  G ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 196    /\ wa 384    = wceq 1483    e. wcel 1990   A.wral 2912   ` cfv 5888  (class class class)co 6650   Basecbs 15857   +g cplusg 15941  SubGrpcsubg 17588  NrmSGrpcnsg 17589   Abelcabl 18194
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-ral 2917  df-rex 2918  df-rab 2921  df-v 3202  df-sbc 3436  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-op 4184  df-uni 4437  df-br 4654  df-opab 4713  df-mpt 4730  df-id 5024  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-iota 5851  df-fun 5890  df-fv 5896  df-ov 6653  df-subg 17591  df-nsg 17592  df-cmn 18195  df-abl 18196
This theorem is referenced by:  qusabl  18268  qus1  19235  qusrhm  19237
  Copyright terms: Public domain W3C validator