| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > isnsg | Structured version Visualization version Unicode version | ||
| Description: Property of being a normal subgroup. (Contributed by Mario Carneiro, 18-Jan-2015.) |
| Ref | Expression |
|---|---|
| isnsg.1 |
|
| isnsg.2 |
|
| Ref | Expression |
|---|---|
| isnsg |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-nsg 17592 |
. . . 4
| |
| 2 | 1 | dmmptss 5631 |
. . 3
|
| 3 | elfvdm 6220 |
. . 3
| |
| 4 | 2, 3 | sseldi 3601 |
. 2
|
| 5 | subgrcl 17599 |
. . 3
| |
| 6 | 5 | adantr 481 |
. 2
|
| 7 | fveq2 6191 |
. . . . . 6
| |
| 8 | fvexd 6203 |
. . . . . . 7
| |
| 9 | fveq2 6191 |
. . . . . . . 8
| |
| 10 | isnsg.1 |
. . . . . . . 8
| |
| 11 | 9, 10 | syl6eqr 2674 |
. . . . . . 7
|
| 12 | fvexd 6203 |
. . . . . . . 8
| |
| 13 | simpl 473 |
. . . . . . . . . 10
| |
| 14 | 13 | fveq2d 6195 |
. . . . . . . . 9
|
| 15 | isnsg.2 |
. . . . . . . . 9
| |
| 16 | 14, 15 | syl6eqr 2674 |
. . . . . . . 8
|
| 17 | simplr 792 |
. . . . . . . . 9
| |
| 18 | simpr 477 |
. . . . . . . . . . . . 13
| |
| 19 | 18 | oveqd 6667 |
. . . . . . . . . . . 12
|
| 20 | 19 | eleq1d 2686 |
. . . . . . . . . . 11
|
| 21 | 18 | oveqd 6667 |
. . . . . . . . . . . 12
|
| 22 | 21 | eleq1d 2686 |
. . . . . . . . . . 11
|
| 23 | 20, 22 | bibi12d 335 |
. . . . . . . . . 10
|
| 24 | 17, 23 | raleqbidv 3152 |
. . . . . . . . 9
|
| 25 | 17, 24 | raleqbidv 3152 |
. . . . . . . 8
|
| 26 | 12, 16, 25 | sbcied2 3473 |
. . . . . . 7
|
| 27 | 8, 11, 26 | sbcied2 3473 |
. . . . . 6
|
| 28 | 7, 27 | rabeqbidv 3195 |
. . . . 5
|
| 29 | fvex 6201 |
. . . . . 6
| |
| 30 | 29 | rabex 4813 |
. . . . 5
|
| 31 | 28, 1, 30 | fvmpt 6282 |
. . . 4
|
| 32 | 31 | eleq2d 2687 |
. . 3
|
| 33 | eleq2 2690 |
. . . . . 6
| |
| 34 | eleq2 2690 |
. . . . . 6
| |
| 35 | 33, 34 | bibi12d 335 |
. . . . 5
|
| 36 | 35 | 2ralbidv 2989 |
. . . 4
|
| 37 | 36 | elrab 3363 |
. . 3
|
| 38 | 32, 37 | syl6bb 276 |
. 2
|
| 39 | 4, 6, 38 | pm5.21nii 368 |
1
|
| Colors of variables: wff setvar class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1722 ax-4 1737 ax-5 1839 ax-6 1888 ax-7 1935 ax-8 1992 ax-9 1999 ax-10 2019 ax-11 2034 ax-12 2047 ax-13 2246 ax-ext 2602 ax-sep 4781 ax-nul 4789 ax-pow 4843 ax-pr 4906 |
| This theorem depends on definitions: df-bi 197 df-or 385 df-an 386 df-3an 1039 df-tru 1486 df-ex 1705 df-nf 1710 df-sb 1881 df-eu 2474 df-mo 2475 df-clab 2609 df-cleq 2615 df-clel 2618 df-nfc 2753 df-ne 2795 df-ral 2917 df-rex 2918 df-rab 2921 df-v 3202 df-sbc 3436 df-dif 3577 df-un 3579 df-in 3581 df-ss 3588 df-nul 3916 df-if 4087 df-pw 4160 df-sn 4178 df-pr 4180 df-op 4184 df-uni 4437 df-br 4654 df-opab 4713 df-mpt 4730 df-id 5024 df-xp 5120 df-rel 5121 df-cnv 5122 df-co 5123 df-dm 5124 df-rn 5125 df-res 5126 df-ima 5127 df-iota 5851 df-fun 5890 df-fv 5896 df-ov 6653 df-subg 17591 df-nsg 17592 |
| This theorem is referenced by: isnsg2 17624 nsgbi 17625 nsgsubg 17626 isnsg4 17637 nmznsg 17638 ablnsg 18250 rzgrp 24300 |
| Copyright terms: Public domain | W3C validator |