MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  isnsg Structured version   Visualization version   Unicode version

Theorem isnsg 17623
Description: Property of being a normal subgroup. (Contributed by Mario Carneiro, 18-Jan-2015.)
Hypotheses
Ref Expression
isnsg.1  |-  X  =  ( Base `  G
)
isnsg.2  |-  .+  =  ( +g  `  G )
Assertion
Ref Expression
isnsg  |-  ( S  e.  (NrmSGrp `  G
)  <->  ( S  e.  (SubGrp `  G )  /\  A. x  e.  X  A. y  e.  X  ( ( x  .+  y )  e.  S  <->  ( y  .+  x )  e.  S ) ) )
Distinct variable groups:    x, y, G    x,  .+ , y    x, S, y    x, X, y

Proof of Theorem isnsg
Dummy variables  g 
b  p  s are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 df-nsg 17592 . . . 4  |- NrmSGrp  =  ( g  e.  Grp  |->  { s  e.  (SubGrp `  g )  |  [. ( Base `  g )  /  b ]. [. ( +g  `  g )  /  p ]. A. x  e.  b  A. y  e.  b  ( ( x p y )  e.  s  <->  ( y p x )  e.  s ) } )
21dmmptss 5631 . . 3  |-  dom NrmSGrp  C_  Grp
3 elfvdm 6220 . . 3  |-  ( S  e.  (NrmSGrp `  G
)  ->  G  e.  dom NrmSGrp )
42, 3sseldi 3601 . 2  |-  ( S  e.  (NrmSGrp `  G
)  ->  G  e.  Grp )
5 subgrcl 17599 . . 3  |-  ( S  e.  (SubGrp `  G
)  ->  G  e.  Grp )
65adantr 481 . 2  |-  ( ( S  e.  (SubGrp `  G )  /\  A. x  e.  X  A. y  e.  X  (
( x  .+  y
)  e.  S  <->  ( y  .+  x )  e.  S
) )  ->  G  e.  Grp )
7 fveq2 6191 . . . . . 6  |-  ( g  =  G  ->  (SubGrp `  g )  =  (SubGrp `  G ) )
8 fvexd 6203 . . . . . . 7  |-  ( g  =  G  ->  ( Base `  g )  e. 
_V )
9 fveq2 6191 . . . . . . . 8  |-  ( g  =  G  ->  ( Base `  g )  =  ( Base `  G
) )
10 isnsg.1 . . . . . . . 8  |-  X  =  ( Base `  G
)
119, 10syl6eqr 2674 . . . . . . 7  |-  ( g  =  G  ->  ( Base `  g )  =  X )
12 fvexd 6203 . . . . . . . 8  |-  ( ( g  =  G  /\  b  =  X )  ->  ( +g  `  g
)  e.  _V )
13 simpl 473 . . . . . . . . . 10  |-  ( ( g  =  G  /\  b  =  X )  ->  g  =  G )
1413fveq2d 6195 . . . . . . . . 9  |-  ( ( g  =  G  /\  b  =  X )  ->  ( +g  `  g
)  =  ( +g  `  G ) )
15 isnsg.2 . . . . . . . . 9  |-  .+  =  ( +g  `  G )
1614, 15syl6eqr 2674 . . . . . . . 8  |-  ( ( g  =  G  /\  b  =  X )  ->  ( +g  `  g
)  =  .+  )
17 simplr 792 . . . . . . . . 9  |-  ( ( ( g  =  G  /\  b  =  X )  /\  p  = 
.+  )  ->  b  =  X )
18 simpr 477 . . . . . . . . . . . . 13  |-  ( ( ( g  =  G  /\  b  =  X )  /\  p  = 
.+  )  ->  p  =  .+  )
1918oveqd 6667 . . . . . . . . . . . 12  |-  ( ( ( g  =  G  /\  b  =  X )  /\  p  = 
.+  )  ->  (
x p y )  =  ( x  .+  y ) )
2019eleq1d 2686 . . . . . . . . . . 11  |-  ( ( ( g  =  G  /\  b  =  X )  /\  p  = 
.+  )  ->  (
( x p y )  e.  s  <->  ( x  .+  y )  e.  s ) )
2118oveqd 6667 . . . . . . . . . . . 12  |-  ( ( ( g  =  G  /\  b  =  X )  /\  p  = 
.+  )  ->  (
y p x )  =  ( y  .+  x ) )
2221eleq1d 2686 . . . . . . . . . . 11  |-  ( ( ( g  =  G  /\  b  =  X )  /\  p  = 
.+  )  ->  (
( y p x )  e.  s  <->  ( y  .+  x )  e.  s ) )
2320, 22bibi12d 335 . . . . . . . . . 10  |-  ( ( ( g  =  G  /\  b  =  X )  /\  p  = 
.+  )  ->  (
( ( x p y )  e.  s  <-> 
( y p x )  e.  s )  <-> 
( ( x  .+  y )  e.  s  <-> 
( y  .+  x
)  e.  s ) ) )
2417, 23raleqbidv 3152 . . . . . . . . 9  |-  ( ( ( g  =  G  /\  b  =  X )  /\  p  = 
.+  )  ->  ( A. y  e.  b 
( ( x p y )  e.  s  <-> 
( y p x )  e.  s )  <->  A. y  e.  X  ( ( x  .+  y )  e.  s  <-> 
( y  .+  x
)  e.  s ) ) )
2517, 24raleqbidv 3152 . . . . . . . 8  |-  ( ( ( g  =  G  /\  b  =  X )  /\  p  = 
.+  )  ->  ( A. x  e.  b  A. y  e.  b 
( ( x p y )  e.  s  <-> 
( y p x )  e.  s )  <->  A. x  e.  X  A. y  e.  X  ( ( x  .+  y )  e.  s  <-> 
( y  .+  x
)  e.  s ) ) )
2612, 16, 25sbcied2 3473 . . . . . . 7  |-  ( ( g  =  G  /\  b  =  X )  ->  ( [. ( +g  `  g )  /  p ]. A. x  e.  b 
A. y  e.  b  ( ( x p y )  e.  s  <-> 
( y p x )  e.  s )  <->  A. x  e.  X  A. y  e.  X  ( ( x  .+  y )  e.  s  <-> 
( y  .+  x
)  e.  s ) ) )
278, 11, 26sbcied2 3473 . . . . . 6  |-  ( g  =  G  ->  ( [. ( Base `  g
)  /  b ]. [. ( +g  `  g
)  /  p ]. A. x  e.  b  A. y  e.  b 
( ( x p y )  e.  s  <-> 
( y p x )  e.  s )  <->  A. x  e.  X  A. y  e.  X  ( ( x  .+  y )  e.  s  <-> 
( y  .+  x
)  e.  s ) ) )
287, 27rabeqbidv 3195 . . . . 5  |-  ( g  =  G  ->  { s  e.  (SubGrp `  g
)  |  [. ( Base `  g )  / 
b ]. [. ( +g  `  g )  /  p ]. A. x  e.  b 
A. y  e.  b  ( ( x p y )  e.  s  <-> 
( y p x )  e.  s ) }  =  { s  e.  (SubGrp `  G
)  |  A. x  e.  X  A. y  e.  X  ( (
x  .+  y )  e.  s  <->  ( y  .+  x )  e.  s ) } )
29 fvex 6201 . . . . . 6  |-  (SubGrp `  G )  e.  _V
3029rabex 4813 . . . . 5  |-  { s  e.  (SubGrp `  G
)  |  A. x  e.  X  A. y  e.  X  ( (
x  .+  y )  e.  s  <->  ( y  .+  x )  e.  s ) }  e.  _V
3128, 1, 30fvmpt 6282 . . . 4  |-  ( G  e.  Grp  ->  (NrmSGrp `  G )  =  {
s  e.  (SubGrp `  G )  |  A. x  e.  X  A. y  e.  X  (
( x  .+  y
)  e.  s  <->  ( y  .+  x )  e.  s ) } )
3231eleq2d 2687 . . 3  |-  ( G  e.  Grp  ->  ( S  e.  (NrmSGrp `  G
)  <->  S  e.  { s  e.  (SubGrp `  G
)  |  A. x  e.  X  A. y  e.  X  ( (
x  .+  y )  e.  s  <->  ( y  .+  x )  e.  s ) } ) )
33 eleq2 2690 . . . . . 6  |-  ( s  =  S  ->  (
( x  .+  y
)  e.  s  <->  ( x  .+  y )  e.  S
) )
34 eleq2 2690 . . . . . 6  |-  ( s  =  S  ->  (
( y  .+  x
)  e.  s  <->  ( y  .+  x )  e.  S
) )
3533, 34bibi12d 335 . . . . 5  |-  ( s  =  S  ->  (
( ( x  .+  y )  e.  s  <-> 
( y  .+  x
)  e.  s )  <-> 
( ( x  .+  y )  e.  S  <->  ( y  .+  x )  e.  S ) ) )
36352ralbidv 2989 . . . 4  |-  ( s  =  S  ->  ( A. x  e.  X  A. y  e.  X  ( ( x  .+  y )  e.  s  <-> 
( y  .+  x
)  e.  s )  <->  A. x  e.  X  A. y  e.  X  ( ( x  .+  y )  e.  S  <->  ( y  .+  x )  e.  S ) ) )
3736elrab 3363 . . 3  |-  ( S  e.  { s  e.  (SubGrp `  G )  |  A. x  e.  X  A. y  e.  X  ( ( x  .+  y )  e.  s  <-> 
( y  .+  x
)  e.  s ) }  <->  ( S  e.  (SubGrp `  G )  /\  A. x  e.  X  A. y  e.  X  ( ( x  .+  y )  e.  S  <->  ( y  .+  x )  e.  S ) ) )
3832, 37syl6bb 276 . 2  |-  ( G  e.  Grp  ->  ( S  e.  (NrmSGrp `  G
)  <->  ( S  e.  (SubGrp `  G )  /\  A. x  e.  X  A. y  e.  X  ( ( x  .+  y )  e.  S  <->  ( y  .+  x )  e.  S ) ) ) )
394, 6, 38pm5.21nii 368 1  |-  ( S  e.  (NrmSGrp `  G
)  <->  ( S  e.  (SubGrp `  G )  /\  A. x  e.  X  A. y  e.  X  ( ( x  .+  y )  e.  S  <->  ( y  .+  x )  e.  S ) ) )
Colors of variables: wff setvar class
Syntax hints:    <-> wb 196    /\ wa 384    = wceq 1483    e. wcel 1990   A.wral 2912   {crab 2916   _Vcvv 3200   [.wsbc 3435   dom cdm 5114   ` cfv 5888  (class class class)co 6650   Basecbs 15857   +g cplusg 15941   Grpcgrp 17422  SubGrpcsubg 17588  NrmSGrpcnsg 17589
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-ral 2917  df-rex 2918  df-rab 2921  df-v 3202  df-sbc 3436  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-op 4184  df-uni 4437  df-br 4654  df-opab 4713  df-mpt 4730  df-id 5024  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-iota 5851  df-fun 5890  df-fv 5896  df-ov 6653  df-subg 17591  df-nsg 17592
This theorem is referenced by:  isnsg2  17624  nsgbi  17625  nsgsubg  17626  isnsg4  17637  nmznsg  17638  ablnsg  18250  rzgrp  24300
  Copyright terms: Public domain W3C validator