MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ablo4 Structured version   Visualization version   Unicode version

Theorem ablo4 27404
Description: Commutative/associative law for Abelian groups. (Contributed by NM, 26-Apr-2007.) (New usage is discouraged.)
Hypothesis
Ref Expression
ablcom.1  |-  X  =  ran  G
Assertion
Ref Expression
ablo4  |-  ( ( G  e.  AbelOp  /\  ( A  e.  X  /\  B  e.  X )  /\  ( C  e.  X  /\  D  e.  X
) )  ->  (
( A G B ) G ( C G D ) )  =  ( ( A G C ) G ( B G D ) ) )

Proof of Theorem ablo4
StepHypRef Expression
1 simprll 802 . . . . . 6  |-  ( ( G  e.  AbelOp  /\  (
( A  e.  X  /\  B  e.  X
)  /\  ( C  e.  X  /\  D  e.  X ) ) )  ->  A  e.  X
)
2 simprlr 803 . . . . . 6  |-  ( ( G  e.  AbelOp  /\  (
( A  e.  X  /\  B  e.  X
)  /\  ( C  e.  X  /\  D  e.  X ) ) )  ->  B  e.  X
)
3 simprrl 804 . . . . . 6  |-  ( ( G  e.  AbelOp  /\  (
( A  e.  X  /\  B  e.  X
)  /\  ( C  e.  X  /\  D  e.  X ) ) )  ->  C  e.  X
)
41, 2, 33jca 1242 . . . . 5  |-  ( ( G  e.  AbelOp  /\  (
( A  e.  X  /\  B  e.  X
)  /\  ( C  e.  X  /\  D  e.  X ) ) )  ->  ( A  e.  X  /\  B  e.  X  /\  C  e.  X ) )
5 ablcom.1 . . . . . 6  |-  X  =  ran  G
65ablo32 27403 . . . . 5  |-  ( ( G  e.  AbelOp  /\  ( A  e.  X  /\  B  e.  X  /\  C  e.  X )
)  ->  ( ( A G B ) G C )  =  ( ( A G C ) G B ) )
74, 6syldan 487 . . . 4  |-  ( ( G  e.  AbelOp  /\  (
( A  e.  X  /\  B  e.  X
)  /\  ( C  e.  X  /\  D  e.  X ) ) )  ->  ( ( A G B ) G C )  =  ( ( A G C ) G B ) )
87oveq1d 6665 . . 3  |-  ( ( G  e.  AbelOp  /\  (
( A  e.  X  /\  B  e.  X
)  /\  ( C  e.  X  /\  D  e.  X ) ) )  ->  ( ( ( A G B ) G C ) G D )  =  ( ( ( A G C ) G B ) G D ) )
9 ablogrpo 27401 . . . 4  |-  ( G  e.  AbelOp  ->  G  e.  GrpOp )
105grpocl 27354 . . . . . . . 8  |-  ( ( G  e.  GrpOp  /\  A  e.  X  /\  B  e.  X )  ->  ( A G B )  e.  X )
11103expb 1266 . . . . . . 7  |-  ( ( G  e.  GrpOp  /\  ( A  e.  X  /\  B  e.  X )
)  ->  ( A G B )  e.  X
)
1211adantrr 753 . . . . . 6  |-  ( ( G  e.  GrpOp  /\  (
( A  e.  X  /\  B  e.  X
)  /\  ( C  e.  X  /\  D  e.  X ) ) )  ->  ( A G B )  e.  X
)
13 simprrl 804 . . . . . 6  |-  ( ( G  e.  GrpOp  /\  (
( A  e.  X  /\  B  e.  X
)  /\  ( C  e.  X  /\  D  e.  X ) ) )  ->  C  e.  X
)
14 simprrr 805 . . . . . 6  |-  ( ( G  e.  GrpOp  /\  (
( A  e.  X  /\  B  e.  X
)  /\  ( C  e.  X  /\  D  e.  X ) ) )  ->  D  e.  X
)
1512, 13, 143jca 1242 . . . . 5  |-  ( ( G  e.  GrpOp  /\  (
( A  e.  X  /\  B  e.  X
)  /\  ( C  e.  X  /\  D  e.  X ) ) )  ->  ( ( A G B )  e.  X  /\  C  e.  X  /\  D  e.  X ) )
165grpoass 27357 . . . . 5  |-  ( ( G  e.  GrpOp  /\  (
( A G B )  e.  X  /\  C  e.  X  /\  D  e.  X )
)  ->  ( (
( A G B ) G C ) G D )  =  ( ( A G B ) G ( C G D ) ) )
1715, 16syldan 487 . . . 4  |-  ( ( G  e.  GrpOp  /\  (
( A  e.  X  /\  B  e.  X
)  /\  ( C  e.  X  /\  D  e.  X ) ) )  ->  ( ( ( A G B ) G C ) G D )  =  ( ( A G B ) G ( C G D ) ) )
189, 17sylan 488 . . 3  |-  ( ( G  e.  AbelOp  /\  (
( A  e.  X  /\  B  e.  X
)  /\  ( C  e.  X  /\  D  e.  X ) ) )  ->  ( ( ( A G B ) G C ) G D )  =  ( ( A G B ) G ( C G D ) ) )
195grpocl 27354 . . . . . . . . 9  |-  ( ( G  e.  GrpOp  /\  A  e.  X  /\  C  e.  X )  ->  ( A G C )  e.  X )
20193expb 1266 . . . . . . . 8  |-  ( ( G  e.  GrpOp  /\  ( A  e.  X  /\  C  e.  X )
)  ->  ( A G C )  e.  X
)
2120adantrlr 759 . . . . . . 7  |-  ( ( G  e.  GrpOp  /\  (
( A  e.  X  /\  B  e.  X
)  /\  C  e.  X ) )  -> 
( A G C )  e.  X )
2221adantrrr 761 . . . . . 6  |-  ( ( G  e.  GrpOp  /\  (
( A  e.  X  /\  B  e.  X
)  /\  ( C  e.  X  /\  D  e.  X ) ) )  ->  ( A G C )  e.  X
)
23 simprlr 803 . . . . . 6  |-  ( ( G  e.  GrpOp  /\  (
( A  e.  X  /\  B  e.  X
)  /\  ( C  e.  X  /\  D  e.  X ) ) )  ->  B  e.  X
)
2422, 23, 143jca 1242 . . . . 5  |-  ( ( G  e.  GrpOp  /\  (
( A  e.  X  /\  B  e.  X
)  /\  ( C  e.  X  /\  D  e.  X ) ) )  ->  ( ( A G C )  e.  X  /\  B  e.  X  /\  D  e.  X ) )
255grpoass 27357 . . . . 5  |-  ( ( G  e.  GrpOp  /\  (
( A G C )  e.  X  /\  B  e.  X  /\  D  e.  X )
)  ->  ( (
( A G C ) G B ) G D )  =  ( ( A G C ) G ( B G D ) ) )
2624, 25syldan 487 . . . 4  |-  ( ( G  e.  GrpOp  /\  (
( A  e.  X  /\  B  e.  X
)  /\  ( C  e.  X  /\  D  e.  X ) ) )  ->  ( ( ( A G C ) G B ) G D )  =  ( ( A G C ) G ( B G D ) ) )
279, 26sylan 488 . . 3  |-  ( ( G  e.  AbelOp  /\  (
( A  e.  X  /\  B  e.  X
)  /\  ( C  e.  X  /\  D  e.  X ) ) )  ->  ( ( ( A G C ) G B ) G D )  =  ( ( A G C ) G ( B G D ) ) )
288, 18, 273eqtr3d 2664 . 2  |-  ( ( G  e.  AbelOp  /\  (
( A  e.  X  /\  B  e.  X
)  /\  ( C  e.  X  /\  D  e.  X ) ) )  ->  ( ( A G B ) G ( C G D ) )  =  ( ( A G C ) G ( B G D ) ) )
29283impb 1260 1  |-  ( ( G  e.  AbelOp  /\  ( A  e.  X  /\  B  e.  X )  /\  ( C  e.  X  /\  D  e.  X
) )  ->  (
( A G B ) G ( C G D ) )  =  ( ( A G C ) G ( B G D ) ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    /\ wa 384    /\ w3a 1037    = wceq 1483    e. wcel 1990   ran crn 5115  (class class class)co 6650   GrpOpcgr 27343   AbelOpcablo 27398
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-sep 4781  ax-nul 4789  ax-pr 4906  ax-un 6949
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ral 2917  df-rex 2918  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-nul 3916  df-if 4087  df-sn 4178  df-pr 4180  df-op 4184  df-uni 4437  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-id 5024  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-fo 5894  df-fv 5896  df-ov 6653  df-grpo 27347  df-ablo 27399
This theorem is referenced by:  nvadd4  27480  ipdirilem  27684  rngoa4  33715
  Copyright terms: Public domain W3C validator