MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  grpoass Structured version   Visualization version   Unicode version

Theorem grpoass 27357
Description: A group operation is associative. (Contributed by NM, 10-Oct-2006.) (New usage is discouraged.)
Hypothesis
Ref Expression
grpfo.1  |-  X  =  ran  G
Assertion
Ref Expression
grpoass  |-  ( ( G  e.  GrpOp  /\  ( A  e.  X  /\  B  e.  X  /\  C  e.  X )
)  ->  ( ( A G B ) G C )  =  ( A G ( B G C ) ) )

Proof of Theorem grpoass
Dummy variables  x  y  z  u are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 grpfo.1 . . . . 5  |-  X  =  ran  G
21isgrpo 27351 . . . 4  |-  ( G  e.  GrpOp  ->  ( G  e.  GrpOp 
<->  ( G : ( X  X.  X ) --> X  /\  A. x  e.  X  A. y  e.  X  A. z  e.  X  ( (
x G y ) G z )  =  ( x G ( y G z ) )  /\  E. u  e.  X  A. x  e.  X  ( (
u G x )  =  x  /\  E. y  e.  X  (
y G x )  =  u ) ) ) )
32ibi 256 . . 3  |-  ( G  e.  GrpOp  ->  ( G : ( X  X.  X ) --> X  /\  A. x  e.  X  A. y  e.  X  A. z  e.  X  (
( x G y ) G z )  =  ( x G ( y G z ) )  /\  E. u  e.  X  A. x  e.  X  (
( u G x )  =  x  /\  E. y  e.  X  ( y G x )  =  u ) ) )
43simp2d 1074 . 2  |-  ( G  e.  GrpOp  ->  A. x  e.  X  A. y  e.  X  A. z  e.  X  ( (
x G y ) G z )  =  ( x G ( y G z ) ) )
5 oveq1 6657 . . . . 5  |-  ( x  =  A  ->  (
x G y )  =  ( A G y ) )
65oveq1d 6665 . . . 4  |-  ( x  =  A  ->  (
( x G y ) G z )  =  ( ( A G y ) G z ) )
7 oveq1 6657 . . . 4  |-  ( x  =  A  ->  (
x G ( y G z ) )  =  ( A G ( y G z ) ) )
86, 7eqeq12d 2637 . . 3  |-  ( x  =  A  ->  (
( ( x G y ) G z )  =  ( x G ( y G z ) )  <->  ( ( A G y ) G z )  =  ( A G ( y G z ) ) ) )
9 oveq2 6658 . . . . 5  |-  ( y  =  B  ->  ( A G y )  =  ( A G B ) )
109oveq1d 6665 . . . 4  |-  ( y  =  B  ->  (
( A G y ) G z )  =  ( ( A G B ) G z ) )
11 oveq1 6657 . . . . 5  |-  ( y  =  B  ->  (
y G z )  =  ( B G z ) )
1211oveq2d 6666 . . . 4  |-  ( y  =  B  ->  ( A G ( y G z ) )  =  ( A G ( B G z ) ) )
1310, 12eqeq12d 2637 . . 3  |-  ( y  =  B  ->  (
( ( A G y ) G z )  =  ( A G ( y G z ) )  <->  ( ( A G B ) G z )  =  ( A G ( B G z ) ) ) )
14 oveq2 6658 . . . 4  |-  ( z  =  C  ->  (
( A G B ) G z )  =  ( ( A G B ) G C ) )
15 oveq2 6658 . . . . 5  |-  ( z  =  C  ->  ( B G z )  =  ( B G C ) )
1615oveq2d 6666 . . . 4  |-  ( z  =  C  ->  ( A G ( B G z ) )  =  ( A G ( B G C ) ) )
1714, 16eqeq12d 2637 . . 3  |-  ( z  =  C  ->  (
( ( A G B ) G z )  =  ( A G ( B G z ) )  <->  ( ( A G B ) G C )  =  ( A G ( B G C ) ) ) )
188, 13, 17rspc3v 3325 . 2  |-  ( ( A  e.  X  /\  B  e.  X  /\  C  e.  X )  ->  ( A. x  e.  X  A. y  e.  X  A. z  e.  X  ( ( x G y ) G z )  =  ( x G ( y G z ) )  ->  ( ( A G B ) G C )  =  ( A G ( B G C ) ) ) )
194, 18mpan9 486 1  |-  ( ( G  e.  GrpOp  /\  ( A  e.  X  /\  B  e.  X  /\  C  e.  X )
)  ->  ( ( A G B ) G C )  =  ( A G ( B G C ) ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    /\ wa 384    /\ w3a 1037    = wceq 1483    e. wcel 1990   A.wral 2912   E.wrex 2913    X. cxp 5112   ran crn 5115   -->wf 5884  (class class class)co 6650   GrpOpcgr 27343
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-sep 4781  ax-nul 4789  ax-pr 4906  ax-un 6949
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ral 2917  df-rex 2918  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-nul 3916  df-if 4087  df-sn 4178  df-pr 4180  df-op 4184  df-uni 4437  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-id 5024  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-fo 5894  df-fv 5896  df-ov 6653  df-grpo 27347
This theorem is referenced by:  grpoidinvlem1  27358  grpoidinvlem2  27359  grpoidinvlem4  27361  grporcan  27372  grpoinvid1  27382  grpoinvid2  27383  grpolcan  27384  grpoinvop  27387  grpomuldivass  27395  grponpcan  27397  ablo32  27403  ablo4  27404  vcm  27431  nvass  27477  hhssabloilem  28118  rngoaass  33713
  Copyright terms: Public domain W3C validator