Proof of Theorem nb3grpr
Step | Hyp | Ref
| Expression |
1 | | id 22 |
. . . . . 6
    
  
   
  

     
   |
2 | | prcom 4267 |
. . . . . . . . . 10
    
  |
3 | 2 | eleq1i 2692 |
. . . . . . . . 9
   
  
  |
4 | | prcom 4267 |
. . . . . . . . . 10
    
  |
5 | 4 | eleq1i 2692 |
. . . . . . . . 9
   
  
  |
6 | | prcom 4267 |
. . . . . . . . . 10
    
  |
7 | 6 | eleq1i 2692 |
. . . . . . . . 9
   
  
  |
8 | 3, 5, 7 | 3anbi123i 1251 |
. . . . . . . 8
    
  
          
      |
9 | | 3anrot 1043 |
. . . . . . . 8
    
  
          
      |
10 | 8, 9 | bitr4i 267 |
. . . . . . 7
    
  
          
      |
11 | 10 | a1i 11 |
. . . . . 6
    
  
   
    
     
    
  
       |
12 | 1, 11 | biadan2 674 |
. . . . 5
    
  
        
     
    
  
       |
13 | | an6 1408 |
. . . . 5
     
  
       
     
      
   
  

   
  

       |
14 | 12, 13 | bitri 264 |
. . . 4
    
  
        
   
  

   
  

       |
15 | 14 | a1i 11 |
. . 3
        
   
    
   
  

   
  

        |
16 | | nb3grpr.v |
. . . . 5
Vtx   |
17 | | nb3grpr.e |
. . . . 5
Edg   |
18 | | nb3grpr.g |
. . . . 5
 USGraph
 |
19 | | nb3grpr.t |
. . . . 5
       |
20 | | nb3grpr.s |
. . . . 5
 
   |
21 | 16, 17, 18, 19, 20 | nb3grprlem1 26282 |
. . . 4
   NeighbVtx    
      
    |
22 | | tprot 4284 |
. . . . . 6
         |
23 | 19, 22 | syl6eq 2672 |
. . . . 5
       |
24 | | 3anrot 1043 |
. . . . . 6
 
 
   |
25 | 20, 24 | sylib 208 |
. . . . 5
 
   |
26 | 16, 17, 18, 23, 25 | nb3grprlem1 26282 |
. . . 4
   NeighbVtx    
      
    |
27 | | tprot 4284 |
. . . . . 6
         |
28 | 19, 27 | syl6eqr 2674 |
. . . . 5
       |
29 | | 3anrot 1043 |
. . . . . 6
 
 
   |
30 | 20, 29 | sylibr 224 |
. . . . 5
 
   |
31 | 16, 17, 18, 28, 30 | nb3grprlem1 26282 |
. . . 4
   NeighbVtx    
      
    |
32 | 21, 26, 31 | 3anbi123d 1399 |
. . 3
    NeighbVtx   
  NeighbVtx
     NeighbVtx     
    
   
  

   
  

        |
33 | | nb3grpr.n |
. . . . 5
 
   |
34 | 16, 17, 18, 19, 20, 33 | nb3grprlem2 26283 |
. . . 4
   NeighbVtx    
 
      NeighbVtx        |
35 | | necom 2847 |
. . . . . . . 8

  |
36 | | necom 2847 |
. . . . . . . 8

  |
37 | | biid 251 |
. . . . . . . 8

  |
38 | 35, 36, 37 | 3anbi123i 1251 |
. . . . . . 7
  

   |
39 | | 3anrot 1043 |
. . . . . . 7
  

   |
40 | 38, 39 | bitr4i 267 |
. . . . . 6
  

   |
41 | 33, 40 | sylib 208 |
. . . . 5
 
   |
42 | 16, 17, 18, 23, 25, 41 | nb3grprlem2 26283 |
. . . 4
   NeighbVtx    
 
      NeighbVtx        |
43 | | 3anrot 1043 |
. . . . . . 7
  

   |
44 | | necom 2847 |
. . . . . . . 8

  |
45 | | biid 251 |
. . . . . . . 8

  |
46 | 36, 44, 45 | 3anbi123i 1251 |
. . . . . . 7
  

   |
47 | 43, 46 | bitri 264 |
. . . . . 6
  

   |
48 | 33, 47 | sylib 208 |
. . . . 5
 
   |
49 | 16, 17, 18, 28, 30, 48 | nb3grprlem2 26283 |
. . . 4
   NeighbVtx    
 
      NeighbVtx        |
50 | 34, 42, 49 | 3anbi123d 1399 |
. . 3
    NeighbVtx   
  NeighbVtx
     NeighbVtx     
 

      NeighbVtx
    
       NeighbVtx             NeighbVtx         |
51 | 15, 32, 50 | 3bitr2d 296 |
. 2
        
   
 

      NeighbVtx
    
       NeighbVtx             NeighbVtx         |
52 | | oveq2 6658 |
. . . . . 6
  NeighbVtx   NeighbVtx    |
53 | 52 | eqeq1d 2624 |
. . . . 5
  
NeighbVtx      NeighbVtx        |
54 | 53 | 2rexbidv 3057 |
. . . 4
  

      NeighbVtx    

       NeighbVtx        |
55 | | oveq2 6658 |
. . . . . 6
  NeighbVtx   NeighbVtx    |
56 | 55 | eqeq1d 2624 |
. . . . 5
  
NeighbVtx      NeighbVtx        |
57 | 56 | 2rexbidv 3057 |
. . . 4
  

      NeighbVtx    

       NeighbVtx        |
58 | | oveq2 6658 |
. . . . . 6
  NeighbVtx   NeighbVtx    |
59 | 58 | eqeq1d 2624 |
. . . . 5
  
NeighbVtx      NeighbVtx        |
60 | 59 | 2rexbidv 3057 |
. . . 4
  

      NeighbVtx    

       NeighbVtx        |
61 | 54, 57, 60 | raltpg 4236 |
. . 3
 
        
       NeighbVtx              NeighbVtx             NeighbVtx             NeighbVtx         |
62 | 20, 61 | syl 17 |
. 2
        
       NeighbVtx              NeighbVtx             NeighbVtx             NeighbVtx         |
63 | | raleq 3138 |
. . . 4
   
           NeighbVtx     
     

      NeighbVtx        |
64 | 63 | bicomd 213 |
. . 3
   
        
       NeighbVtx     


      NeighbVtx        |
65 | 19, 64 | syl 17 |
. 2
        
       NeighbVtx     


      NeighbVtx        |
66 | 51, 62, 65 | 3bitr2d 296 |
1
        
   


       NeighbVtx        |