| Mathbox for Norm Megill |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > paddasslem10 | Structured version Visualization version Unicode version | ||
| Description: Lemma for paddass 35124. Use paddasslem4 35109 to eliminate |
| Ref | Expression |
|---|---|
| paddasslem.l |
|
| paddasslem.j |
|
| paddasslem.a |
|
| paddasslem.p |
|
| Ref | Expression |
|---|---|
| paddasslem10 |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | simpl11 1136 |
. . . 4
| |
| 2 | simpl3l 1116 |
. . . 4
| |
| 3 | simpl3r 1117 |
. . . 4
| |
| 4 | 1, 2, 3 | 3jca 1242 |
. . 3
|
| 5 | an6 1408 |
. . . . . 6
| |
| 6 | ssel2 3598 |
. . . . . . 7
| |
| 7 | ssel2 3598 |
. . . . . . 7
| |
| 8 | ssel2 3598 |
. . . . . . 7
| |
| 9 | 6, 7, 8 | 3anim123i 1247 |
. . . . . 6
|
| 10 | 5, 9 | sylbi 207 |
. . . . 5
|
| 11 | 10 | 3ad2antl2 1224 |
. . . 4
|
| 12 | 11 | adantrr 753 |
. . 3
|
| 13 | simpl12 1137 |
. . . 4
| |
| 14 | simpl13 1138 |
. . . 4
| |
| 15 | simprr1 1109 |
. . . 4
| |
| 16 | 13, 14, 15 | 3jca 1242 |
. . 3
|
| 17 | simprr2 1110 |
. . 3
| |
| 18 | simprr3 1111 |
. . 3
| |
| 19 | paddasslem.l |
. . . 4
| |
| 20 | paddasslem.j |
. . . 4
| |
| 21 | paddasslem.a |
. . . 4
| |
| 22 | 19, 20, 21 | paddasslem4 35109 |
. . 3
|
| 23 | 4, 12, 16, 17, 18, 22 | syl32anc 1334 |
. 2
|
| 24 | simpl2 1065 |
. . . . 5
| |
| 25 | simpl3 1066 |
. . . . 5
| |
| 26 | 1, 24, 25 | 3jca 1242 |
. . . 4
|
| 27 | 26 | adantr 481 |
. . 3
|
| 28 | simplrl 800 |
. . 3
| |
| 29 | 15, 18 | jca 554 |
. . . 4
|
| 30 | 29 | adantr 481 |
. . 3
|
| 31 | simprl 794 |
. . . 4
| |
| 32 | simprrl 804 |
. . . 4
| |
| 33 | simprrr 805 |
. . . 4
| |
| 34 | 31, 32, 33 | 3jca 1242 |
. . 3
|
| 35 | paddasslem.p |
. . . 4
| |
| 36 | 19, 20, 21, 35 | paddasslem9 35114 |
. . 3
|
| 37 | 27, 28, 30, 34, 36 | syl13anc 1328 |
. 2
|
| 38 | 23, 37 | rexlimddv 3035 |
1
|
| Colors of variables: wff setvar class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1722 ax-4 1737 ax-5 1839 ax-6 1888 ax-7 1935 ax-8 1992 ax-9 1999 ax-10 2019 ax-11 2034 ax-12 2047 ax-13 2246 ax-ext 2602 ax-rep 4771 ax-sep 4781 ax-nul 4789 ax-pow 4843 ax-pr 4906 ax-un 6949 |
| This theorem depends on definitions: df-bi 197 df-or 385 df-an 386 df-3an 1039 df-tru 1486 df-ex 1705 df-nf 1710 df-sb 1881 df-eu 2474 df-mo 2475 df-clab 2609 df-cleq 2615 df-clel 2618 df-nfc 2753 df-ne 2795 df-ral 2917 df-rex 2918 df-reu 2919 df-rab 2921 df-v 3202 df-sbc 3436 df-csb 3534 df-dif 3577 df-un 3579 df-in 3581 df-ss 3588 df-nul 3916 df-if 4087 df-pw 4160 df-sn 4178 df-pr 4180 df-op 4184 df-uni 4437 df-iun 4522 df-br 4654 df-opab 4713 df-mpt 4730 df-id 5024 df-xp 5120 df-rel 5121 df-cnv 5122 df-co 5123 df-dm 5124 df-rn 5125 df-res 5126 df-ima 5127 df-iota 5851 df-fun 5890 df-fn 5891 df-f 5892 df-f1 5893 df-fo 5894 df-f1o 5895 df-fv 5896 df-riota 6611 df-ov 6653 df-oprab 6654 df-mpt2 6655 df-1st 7168 df-2nd 7169 df-preset 16928 df-poset 16946 df-plt 16958 df-lub 16974 df-glb 16975 df-join 16976 df-meet 16977 df-p0 17039 df-lat 17046 df-clat 17108 df-oposet 34463 df-ol 34465 df-oml 34466 df-covers 34553 df-ats 34554 df-atl 34585 df-cvlat 34609 df-hlat 34638 df-padd 35082 |
| This theorem is referenced by: paddasslem14 35119 |
| Copyright terms: Public domain | W3C validator |