| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > anandir | Structured version Visualization version Unicode version | ||
| Description: Distribution of conjunction over conjunction. (Contributed by NM, 24-Aug-1995.) |
| Ref | Expression |
|---|---|
| anandir |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | anidm 676 |
. . 3
| |
| 2 | 1 | anbi2i 730 |
. 2
|
| 3 | an4 865 |
. 2
| |
| 4 | 2, 3 | bitr3i 266 |
1
|
| Colors of variables: wff setvar class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 197 df-an 386 |
| This theorem is referenced by: anandi3r 1053 disjxun 4651 fununi 5964 imadif 5973 wfrlem5 7419 elfzuzb 12336 frgr3v 27139 5oalem3 28515 5oalem5 28517 frrlem5 31784 nzin 38517 un2122 39017 |
| Copyright terms: Public domain | W3C validator |