Users' Mathboxes Mathbox for Steve Rodriguez < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  nzin Structured version   Visualization version   Unicode version

Theorem nzin 38517
Description: The intersection of the set of multiples of m, mℤ, and those of n, nℤ, is the set of multiples of their least common multiple. Roughly Lemma 2.1(c) of https://www.mscs.dal.ca/~selinger/3343/handouts/ideals.pdf p. 5 and Problem 1(b) of https://people.math.binghamton.edu/mazur/teach/40107/40107h16sol.pdf p. 1, with mℤ and nℤ as images of the divides relation under m and n. (Contributed by Steve Rodriguez, 20-Jan-2020.)
Hypotheses
Ref Expression
nzin.m  |-  ( ph  ->  M  e.  ZZ )
nzin.n  |-  ( ph  ->  N  e.  ZZ )
Assertion
Ref Expression
nzin  |-  ( ph  ->  ( (  ||  " { M } )  i^i  (  ||  " { N }
) )  =  ( 
||  " { ( M lcm 
N ) } ) )

Proof of Theorem nzin
Dummy variable  n is distinct from all other variables.
StepHypRef Expression
1 dvdszrcl 14988 . . . . . . . . 9  |-  ( M 
||  n  ->  ( M  e.  ZZ  /\  n  e.  ZZ ) )
2 dvdszrcl 14988 . . . . . . . . 9  |-  ( N 
||  n  ->  ( N  e.  ZZ  /\  n  e.  ZZ ) )
31, 2anim12i 590 . . . . . . . 8  |-  ( ( M  ||  n  /\  N  ||  n )  -> 
( ( M  e.  ZZ  /\  n  e.  ZZ )  /\  ( N  e.  ZZ  /\  n  e.  ZZ ) ) )
4 anandir 872 . . . . . . . 8  |-  ( ( ( M  e.  ZZ  /\  N  e.  ZZ )  /\  n  e.  ZZ ) 
<->  ( ( M  e.  ZZ  /\  n  e.  ZZ )  /\  ( N  e.  ZZ  /\  n  e.  ZZ ) ) )
53, 4sylibr 224 . . . . . . 7  |-  ( ( M  ||  n  /\  N  ||  n )  -> 
( ( M  e.  ZZ  /\  N  e.  ZZ )  /\  n  e.  ZZ ) )
65ancomd 467 . . . . . 6  |-  ( ( M  ||  n  /\  N  ||  n )  -> 
( n  e.  ZZ  /\  ( M  e.  ZZ  /\  N  e.  ZZ ) ) )
7 lcmdvds 15321 . . . . . . 7  |-  ( ( n  e.  ZZ  /\  M  e.  ZZ  /\  N  e.  ZZ )  ->  (
( M  ||  n  /\  N  ||  n )  ->  ( M lcm  N
)  ||  n )
)
873expb 1266 . . . . . 6  |-  ( ( n  e.  ZZ  /\  ( M  e.  ZZ  /\  N  e.  ZZ ) )  ->  ( ( M  ||  n  /\  N  ||  n )  ->  ( M lcm  N )  ||  n
) )
96, 8mpcom 38 . . . . 5  |-  ( ( M  ||  n  /\  N  ||  n )  -> 
( M lcm  N ) 
||  n )
10 elin 3796 . . . . . 6  |-  ( n  e.  ( (  ||  " { M } )  i^i  (  ||  " { N } ) )  <->  ( n  e.  (  ||  " { M } )  /\  n  e.  (  ||  " { N } ) ) )
11 reldvds 38514 . . . . . . . 8  |-  Rel  ||
12 elrelimasn 5489 . . . . . . . 8  |-  ( Rel  ||  ->  ( n  e.  (  ||  " { M } )  <->  M  ||  n
) )
1311, 12ax-mp 5 . . . . . . 7  |-  ( n  e.  (  ||  " { M } )  <->  M  ||  n
)
14 elrelimasn 5489 . . . . . . . 8  |-  ( Rel  ||  ->  ( n  e.  (  ||  " { N } )  <->  N  ||  n
) )
1511, 14ax-mp 5 . . . . . . 7  |-  ( n  e.  (  ||  " { N } )  <->  N  ||  n
)
1613, 15anbi12i 733 . . . . . 6  |-  ( ( n  e.  (  ||  " { M } )  /\  n  e.  ( 
||  " { N }
) )  <->  ( M  ||  n  /\  N  ||  n ) )
1710, 16bitri 264 . . . . 5  |-  ( n  e.  ( (  ||  " { M } )  i^i  (  ||  " { N } ) )  <->  ( M  ||  n  /\  N  ||  n ) )
18 elrelimasn 5489 . . . . . 6  |-  ( Rel  ||  ->  ( n  e.  (  ||  " {
( M lcm  N ) } )  <->  ( M lcm  N )  ||  n ) )
1911, 18ax-mp 5 . . . . 5  |-  ( n  e.  (  ||  " {
( M lcm  N ) } )  <->  ( M lcm  N )  ||  n )
209, 17, 193imtr4i 281 . . . 4  |-  ( n  e.  ( (  ||  " { M } )  i^i  (  ||  " { N } ) )  ->  n  e.  (  ||  " { ( M lcm  N
) } ) )
2120ssriv 3607 . . 3  |-  ( ( 
||  " { M }
)  i^i  (  ||  " { N } ) )  C_  (  ||  " { ( M lcm  N
) } )
2221a1i 11 . 2  |-  ( ph  ->  ( (  ||  " { M } )  i^i  (  ||  " { N }
) )  C_  (  ||  " { ( M lcm 
N ) } ) )
23 nzin.m . . . . . 6  |-  ( ph  ->  M  e.  ZZ )
24 nzin.n . . . . . 6  |-  ( ph  ->  N  e.  ZZ )
25 dvdslcm 15311 . . . . . 6  |-  ( ( M  e.  ZZ  /\  N  e.  ZZ )  ->  ( M  ||  ( M lcm  N )  /\  N  ||  ( M lcm  N ) ) )
2623, 24, 25syl2anc 693 . . . . 5  |-  ( ph  ->  ( M  ||  ( M lcm  N )  /\  N  ||  ( M lcm  N ) ) )
2726simpld 475 . . . 4  |-  ( ph  ->  M  ||  ( M lcm 
N ) )
28 lcmcl 15314 . . . . . . 7  |-  ( ( M  e.  ZZ  /\  N  e.  ZZ )  ->  ( M lcm  N )  e.  NN0 )
2923, 24, 28syl2anc 693 . . . . . 6  |-  ( ph  ->  ( M lcm  N )  e.  NN0 )
3029nn0zd 11480 . . . . 5  |-  ( ph  ->  ( M lcm  N )  e.  ZZ )
3130, 23nzss 38516 . . . 4  |-  ( ph  ->  ( (  ||  " {
( M lcm  N ) } )  C_  (  ||  " { M }
)  <->  M  ||  ( M lcm 
N ) ) )
3227, 31mpbird 247 . . 3  |-  ( ph  ->  (  ||  " {
( M lcm  N ) } )  C_  (  ||  " { M }
) )
3326simprd 479 . . . 4  |-  ( ph  ->  N  ||  ( M lcm 
N ) )
3430, 24nzss 38516 . . . 4  |-  ( ph  ->  ( (  ||  " {
( M lcm  N ) } )  C_  (  ||  " { N }
)  <->  N  ||  ( M lcm 
N ) ) )
3533, 34mpbird 247 . . 3  |-  ( ph  ->  (  ||  " {
( M lcm  N ) } )  C_  (  ||  " { N }
) )
3632, 35ssind 3837 . 2  |-  ( ph  ->  (  ||  " {
( M lcm  N ) } )  C_  (
(  ||  " { M } )  i^i  (  ||  " { N }
) ) )
3722, 36eqssd 3620 1  |-  ( ph  ->  ( (  ||  " { M } )  i^i  (  ||  " { N }
) )  =  ( 
||  " { ( M lcm 
N ) } ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 196    /\ wa 384    = wceq 1483    e. wcel 1990    i^i cin 3573    C_ wss 3574   {csn 4177   class class class wbr 4653   "cima 5117   Rel wrel 5119  (class class class)co 6650   NN0cn0 11292   ZZcz 11377    || cdvds 14983   lcm clcm 15301
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-cnex 9992  ax-resscn 9993  ax-1cn 9994  ax-icn 9995  ax-addcl 9996  ax-addrcl 9997  ax-mulcl 9998  ax-mulrcl 9999  ax-mulcom 10000  ax-addass 10001  ax-mulass 10002  ax-distr 10003  ax-i2m1 10004  ax-1ne0 10005  ax-1rid 10006  ax-rnegex 10007  ax-rrecex 10008  ax-cnre 10009  ax-pre-lttri 10010  ax-pre-lttrn 10011  ax-pre-ltadd 10012  ax-pre-mulgt0 10013  ax-pre-sup 10014
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-nel 2898  df-ral 2917  df-rex 2918  df-reu 2919  df-rmo 2920  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-pred 5680  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-riota 6611  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-om 7066  df-2nd 7169  df-wrecs 7407  df-recs 7468  df-rdg 7506  df-er 7742  df-en 7956  df-dom 7957  df-sdom 7958  df-sup 8348  df-inf 8349  df-pnf 10076  df-mnf 10077  df-xr 10078  df-ltxr 10079  df-le 10080  df-sub 10268  df-neg 10269  df-div 10685  df-nn 11021  df-2 11079  df-3 11080  df-n0 11293  df-z 11378  df-uz 11688  df-rp 11833  df-fl 12593  df-mod 12669  df-seq 12802  df-exp 12861  df-cj 13839  df-re 13840  df-im 13841  df-sqrt 13975  df-abs 13976  df-dvds 14984  df-gcd 15217  df-lcm 15303
This theorem is referenced by:  nzprmdif  38518
  Copyright terms: Public domain W3C validator