HSE Home Hilbert Space Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  HSE Home  >  Th. List  >  5oalem3 Structured version   Visualization version   Unicode version

Theorem 5oalem3 28515
Description: Lemma for orthoarguesian law 5OA. (Contributed by NM, 2-Apr-2000.) (New usage is discouraged.)
Hypotheses
Ref Expression
5oalem3.1  |-  A  e.  SH
5oalem3.2  |-  B  e.  SH
5oalem3.3  |-  C  e.  SH
5oalem3.4  |-  D  e.  SH
5oalem3.5  |-  F  e.  SH
5oalem3.6  |-  G  e.  SH
Assertion
Ref Expression
5oalem3  |-  ( ( ( ( ( x  e.  A  /\  y  e.  B )  /\  (
z  e.  C  /\  w  e.  D )
)  /\  ( f  e.  F  /\  g  e.  G ) )  /\  ( ( x  +h  y )  =  ( f  +h  g )  /\  ( z  +h  w )  =  ( f  +h  g ) ) )  ->  (
x  -h  z )  e.  ( ( ( A  +H  F )  i^i  ( B  +H  G ) )  +H  ( ( C  +H  F )  i^i  ( D  +H  G ) ) ) )

Proof of Theorem 5oalem3
StepHypRef Expression
1 anandir 872 . . . 4  |-  ( ( ( ( x  e.  A  /\  y  e.  B )  /\  (
z  e.  C  /\  w  e.  D )
)  /\  ( f  e.  F  /\  g  e.  G ) )  <->  ( (
( x  e.  A  /\  y  e.  B
)  /\  ( f  e.  F  /\  g  e.  G ) )  /\  ( ( z  e.  C  /\  w  e.  D )  /\  (
f  e.  F  /\  g  e.  G )
) ) )
2 5oalem3.1 . . . . . . 7  |-  A  e.  SH
3 5oalem3.2 . . . . . . 7  |-  B  e.  SH
4 5oalem3.5 . . . . . . 7  |-  F  e.  SH
5 5oalem3.6 . . . . . . 7  |-  G  e.  SH
62, 3, 4, 55oalem2 28514 . . . . . 6  |-  ( ( ( ( x  e.  A  /\  y  e.  B )  /\  (
f  e.  F  /\  g  e.  G )
)  /\  ( x  +h  y )  =  ( f  +h  g ) )  ->  ( x  -h  f )  e.  ( ( A  +H  F
)  i^i  ( B  +H  G ) ) )
7 5oalem3.3 . . . . . . 7  |-  C  e.  SH
8 5oalem3.4 . . . . . . 7  |-  D  e.  SH
97, 8, 4, 55oalem2 28514 . . . . . 6  |-  ( ( ( ( z  e.  C  /\  w  e.  D )  /\  (
f  e.  F  /\  g  e.  G )
)  /\  ( z  +h  w )  =  ( f  +h  g ) )  ->  ( z  -h  f )  e.  ( ( C  +H  F
)  i^i  ( D  +H  G ) ) )
106, 9anim12i 590 . . . . 5  |-  ( ( ( ( ( x  e.  A  /\  y  e.  B )  /\  (
f  e.  F  /\  g  e.  G )
)  /\  ( x  +h  y )  =  ( f  +h  g ) )  /\  ( ( ( z  e.  C  /\  w  e.  D
)  /\  ( f  e.  F  /\  g  e.  G ) )  /\  ( z  +h  w
)  =  ( f  +h  g ) ) )  ->  ( (
x  -h  f )  e.  ( ( A  +H  F )  i^i  ( B  +H  G
) )  /\  (
z  -h  f )  e.  ( ( C  +H  F )  i^i  ( D  +H  G
) ) ) )
1110an4s 869 . . . 4  |-  ( ( ( ( ( x  e.  A  /\  y  e.  B )  /\  (
f  e.  F  /\  g  e.  G )
)  /\  ( (
z  e.  C  /\  w  e.  D )  /\  ( f  e.  F  /\  g  e.  G
) ) )  /\  ( ( x  +h  y )  =  ( f  +h  g )  /\  ( z  +h  w )  =  ( f  +h  g ) ) )  ->  (
( x  -h  f
)  e.  ( ( A  +H  F )  i^i  ( B  +H  G ) )  /\  ( z  -h  f
)  e.  ( ( C  +H  F )  i^i  ( D  +H  G ) ) ) )
121, 11sylanb 489 . . 3  |-  ( ( ( ( ( x  e.  A  /\  y  e.  B )  /\  (
z  e.  C  /\  w  e.  D )
)  /\  ( f  e.  F  /\  g  e.  G ) )  /\  ( ( x  +h  y )  =  ( f  +h  g )  /\  ( z  +h  w )  =  ( f  +h  g ) ) )  ->  (
( x  -h  f
)  e.  ( ( A  +H  F )  i^i  ( B  +H  G ) )  /\  ( z  -h  f
)  e.  ( ( C  +H  F )  i^i  ( D  +H  G ) ) ) )
132, 4shscli 28176 . . . . 5  |-  ( A  +H  F )  e.  SH
143, 5shscli 28176 . . . . 5  |-  ( B  +H  G )  e.  SH
1513, 14shincli 28221 . . . 4  |-  ( ( A  +H  F )  i^i  ( B  +H  G ) )  e.  SH
167, 4shscli 28176 . . . . 5  |-  ( C  +H  F )  e.  SH
178, 5shscli 28176 . . . . 5  |-  ( D  +H  G )  e.  SH
1816, 17shincli 28221 . . . 4  |-  ( ( C  +H  F )  i^i  ( D  +H  G ) )  e.  SH
1915, 18shsvsi 28226 . . 3  |-  ( ( ( x  -h  f
)  e.  ( ( A  +H  F )  i^i  ( B  +H  G ) )  /\  ( z  -h  f
)  e.  ( ( C  +H  F )  i^i  ( D  +H  G ) ) )  ->  ( ( x  -h  f )  -h  ( z  -h  f
) )  e.  ( ( ( A  +H  F )  i^i  ( B  +H  G ) )  +H  ( ( C  +H  F )  i^i  ( D  +H  G
) ) ) )
2012, 19syl 17 . 2  |-  ( ( ( ( ( x  e.  A  /\  y  e.  B )  /\  (
z  e.  C  /\  w  e.  D )
)  /\  ( f  e.  F  /\  g  e.  G ) )  /\  ( ( x  +h  y )  =  ( f  +h  g )  /\  ( z  +h  w )  =  ( f  +h  g ) ) )  ->  (
( x  -h  f
)  -h  ( z  -h  f ) )  e.  ( ( ( A  +H  F )  i^i  ( B  +H  G ) )  +H  ( ( C  +H  F )  i^i  ( D  +H  G ) ) ) )
212sheli 28071 . . . . . . 7  |-  ( x  e.  A  ->  x  e.  ~H )
2221adantr 481 . . . . . 6  |-  ( ( x  e.  A  /\  y  e.  B )  ->  x  e.  ~H )
237sheli 28071 . . . . . . 7  |-  ( z  e.  C  ->  z  e.  ~H )
2423adantr 481 . . . . . 6  |-  ( ( z  e.  C  /\  w  e.  D )  ->  z  e.  ~H )
2522, 24anim12i 590 . . . . 5  |-  ( ( ( x  e.  A  /\  y  e.  B
)  /\  ( z  e.  C  /\  w  e.  D ) )  -> 
( x  e.  ~H  /\  z  e.  ~H )
)
264sheli 28071 . . . . . 6  |-  ( f  e.  F  ->  f  e.  ~H )
2726adantr 481 . . . . 5  |-  ( ( f  e.  F  /\  g  e.  G )  ->  f  e.  ~H )
28 hvsubsub4 27917 . . . . . . 7  |-  ( ( ( x  e.  ~H  /\  f  e.  ~H )  /\  ( z  e.  ~H  /\  f  e.  ~H )
)  ->  ( (
x  -h  f )  -h  ( z  -h  f ) )  =  ( ( x  -h  z )  -h  (
f  -h  f ) ) )
2928anandirs 874 . . . . . 6  |-  ( ( ( x  e.  ~H  /\  z  e.  ~H )  /\  f  e.  ~H )  ->  ( ( x  -h  f )  -h  ( z  -h  f
) )  =  ( ( x  -h  z
)  -h  ( f  -h  f ) ) )
30 hvsubid 27883 . . . . . . . 8  |-  ( f  e.  ~H  ->  (
f  -h  f )  =  0h )
3130oveq2d 6666 . . . . . . 7  |-  ( f  e.  ~H  ->  (
( x  -h  z
)  -h  ( f  -h  f ) )  =  ( ( x  -h  z )  -h 
0h ) )
32 hvsubcl 27874 . . . . . . . 8  |-  ( ( x  e.  ~H  /\  z  e.  ~H )  ->  ( x  -h  z
)  e.  ~H )
33 hvsub0 27933 . . . . . . . 8  |-  ( ( x  -h  z )  e.  ~H  ->  (
( x  -h  z
)  -h  0h )  =  ( x  -h  z ) )
3432, 33syl 17 . . . . . . 7  |-  ( ( x  e.  ~H  /\  z  e.  ~H )  ->  ( ( x  -h  z )  -h  0h )  =  ( x  -h  z ) )
3531, 34sylan9eqr 2678 . . . . . 6  |-  ( ( ( x  e.  ~H  /\  z  e.  ~H )  /\  f  e.  ~H )  ->  ( ( x  -h  z )  -h  ( f  -h  f
) )  =  ( x  -h  z ) )
3629, 35eqtrd 2656 . . . . 5  |-  ( ( ( x  e.  ~H  /\  z  e.  ~H )  /\  f  e.  ~H )  ->  ( ( x  -h  f )  -h  ( z  -h  f
) )  =  ( x  -h  z ) )
3725, 27, 36syl2an 494 . . . 4  |-  ( ( ( ( x  e.  A  /\  y  e.  B )  /\  (
z  e.  C  /\  w  e.  D )
)  /\  ( f  e.  F  /\  g  e.  G ) )  -> 
( ( x  -h  f )  -h  (
z  -h  f ) )  =  ( x  -h  z ) )
3837eleq1d 2686 . . 3  |-  ( ( ( ( x  e.  A  /\  y  e.  B )  /\  (
z  e.  C  /\  w  e.  D )
)  /\  ( f  e.  F  /\  g  e.  G ) )  -> 
( ( ( x  -h  f )  -h  ( z  -h  f
) )  e.  ( ( ( A  +H  F )  i^i  ( B  +H  G ) )  +H  ( ( C  +H  F )  i^i  ( D  +H  G
) ) )  <->  ( x  -h  z )  e.  ( ( ( A  +H  F )  i^i  ( B  +H  G ) )  +H  ( ( C  +H  F )  i^i  ( D  +H  G
) ) ) ) )
3938adantr 481 . 2  |-  ( ( ( ( ( x  e.  A  /\  y  e.  B )  /\  (
z  e.  C  /\  w  e.  D )
)  /\  ( f  e.  F  /\  g  e.  G ) )  /\  ( ( x  +h  y )  =  ( f  +h  g )  /\  ( z  +h  w )  =  ( f  +h  g ) ) )  ->  (
( ( x  -h  f )  -h  (
z  -h  f ) )  e.  ( ( ( A  +H  F
)  i^i  ( B  +H  G ) )  +H  ( ( C  +H  F )  i^i  ( D  +H  G ) ) )  <->  ( x  -h  z )  e.  ( ( ( A  +H  F )  i^i  ( B  +H  G ) )  +H  ( ( C  +H  F )  i^i  ( D  +H  G
) ) ) ) )
4020, 39mpbid 222 1  |-  ( ( ( ( ( x  e.  A  /\  y  e.  B )  /\  (
z  e.  C  /\  w  e.  D )
)  /\  ( f  e.  F  /\  g  e.  G ) )  /\  ( ( x  +h  y )  =  ( f  +h  g )  /\  ( z  +h  w )  =  ( f  +h  g ) ) )  ->  (
x  -h  z )  e.  ( ( ( A  +H  F )  i^i  ( B  +H  G ) )  +H  ( ( C  +H  F )  i^i  ( D  +H  G ) ) ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 196    /\ wa 384    = wceq 1483    e. wcel 1990    i^i cin 3573  (class class class)co 6650   ~Hchil 27776    +h cva 27777   0hc0v 27781    -h cmv 27782   SHcsh 27785    +H cph 27788
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-cnex 9992  ax-resscn 9993  ax-1cn 9994  ax-icn 9995  ax-addcl 9996  ax-addrcl 9997  ax-mulcl 9998  ax-mulrcl 9999  ax-mulcom 10000  ax-addass 10001  ax-mulass 10002  ax-distr 10003  ax-i2m1 10004  ax-1ne0 10005  ax-1rid 10006  ax-rnegex 10007  ax-rrecex 10008  ax-cnre 10009  ax-pre-lttri 10010  ax-pre-lttrn 10011  ax-pre-ltadd 10012  ax-hilex 27856  ax-hfvadd 27857  ax-hvcom 27858  ax-hvass 27859  ax-hv0cl 27860  ax-hvaddid 27861  ax-hfvmul 27862  ax-hvmulid 27863  ax-hvmulass 27864  ax-hvdistr1 27865  ax-hvdistr2 27866  ax-hvmul0 27867
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-nel 2898  df-ral 2917  df-rex 2918  df-reu 2919  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-int 4476  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-pred 5680  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-riota 6611  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-om 7066  df-wrecs 7407  df-recs 7468  df-rdg 7506  df-er 7742  df-map 7859  df-en 7956  df-dom 7957  df-sdom 7958  df-pnf 10076  df-mnf 10077  df-ltxr 10079  df-sub 10268  df-neg 10269  df-nn 11021  df-grpo 27347  df-ablo 27399  df-hvsub 27828  df-hlim 27829  df-sh 28064  df-ch 28078  df-shs 28167
This theorem is referenced by:  5oalem4  28516
  Copyright terms: Public domain W3C validator