| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > fununi | Structured version Visualization version Unicode version | ||
| Description: The union of a chain (with respect to inclusion) of functions is a function. (Contributed by NM, 10-Aug-2004.) |
| Ref | Expression |
|---|---|
| fununi |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | funrel 5905 |
. . . . 5
| |
| 2 | 1 | adantr 481 |
. . . 4
|
| 3 | 2 | ralimi 2952 |
. . 3
|
| 4 | reluni 5241 |
. . 3
| |
| 5 | 3, 4 | sylibr 224 |
. 2
|
| 6 | r19.28v 3071 |
. . . 4
| |
| 7 | 6 | ralimi 2952 |
. . 3
|
| 8 | ssel 3597 |
. . . . . . . . . . . 12
| |
| 9 | 8 | anim1d 588 |
. . . . . . . . . . 11
|
| 10 | dffun4 5900 |
. . . . . . . . . . . . . 14
| |
| 11 | 10 | simprbi 480 |
. . . . . . . . . . . . 13
|
| 12 | 11 | 19.21bbi 2060 |
. . . . . . . . . . . 12
|
| 13 | 12 | 19.21bi 2059 |
. . . . . . . . . . 11
|
| 14 | 9, 13 | syl9r 78 |
. . . . . . . . . 10
|
| 15 | 14 | adantl 482 |
. . . . . . . . 9
|
| 16 | ssel 3597 |
. . . . . . . . . . . 12
| |
| 17 | 16 | anim2d 589 |
. . . . . . . . . . 11
|
| 18 | dffun4 5900 |
. . . . . . . . . . . . . 14
| |
| 19 | 18 | simprbi 480 |
. . . . . . . . . . . . 13
|
| 20 | 19 | 19.21bbi 2060 |
. . . . . . . . . . . 12
|
| 21 | 20 | 19.21bi 2059 |
. . . . . . . . . . 11
|
| 22 | 17, 21 | syl9r 78 |
. . . . . . . . . 10
|
| 23 | 22 | adantr 481 |
. . . . . . . . 9
|
| 24 | 15, 23 | jaod 395 |
. . . . . . . 8
|
| 25 | 24 | imp 445 |
. . . . . . 7
|
| 26 | 25 | 2ralimi 2953 |
. . . . . 6
|
| 27 | funeq 5908 |
. . . . . . . . . 10
| |
| 28 | sseq1 3626 |
. . . . . . . . . . 11
| |
| 29 | sseq2 3627 |
. . . . . . . . . . 11
| |
| 30 | 28, 29 | orbi12d 746 |
. . . . . . . . . 10
|
| 31 | 27, 30 | anbi12d 747 |
. . . . . . . . 9
|
| 32 | sseq2 3627 |
. . . . . . . . . . 11
| |
| 33 | sseq1 3626 |
. . . . . . . . . . 11
| |
| 34 | 32, 33 | orbi12d 746 |
. . . . . . . . . 10
|
| 35 | 34 | anbi2d 740 |
. . . . . . . . 9
|
| 36 | 31, 35 | cbvral2v 3179 |
. . . . . . . 8
|
| 37 | ralcom 3098 |
. . . . . . . . 9
| |
| 38 | orcom 402 |
. . . . . . . . . . . 12
| |
| 39 | sseq1 3626 |
. . . . . . . . . . . . 13
| |
| 40 | sseq2 3627 |
. . . . . . . . . . . . 13
| |
| 41 | 39, 40 | orbi12d 746 |
. . . . . . . . . . . 12
|
| 42 | 38, 41 | syl5bb 272 |
. . . . . . . . . . 11
|
| 43 | 42 | anbi2d 740 |
. . . . . . . . . 10
|
| 44 | funeq 5908 |
. . . . . . . . . . 11
| |
| 45 | sseq2 3627 |
. . . . . . . . . . . 12
| |
| 46 | sseq1 3626 |
. . . . . . . . . . . 12
| |
| 47 | 45, 46 | orbi12d 746 |
. . . . . . . . . . 11
|
| 48 | 44, 47 | anbi12d 747 |
. . . . . . . . . 10
|
| 49 | 43, 48 | cbvral2v 3179 |
. . . . . . . . 9
|
| 50 | 37, 49 | bitri 264 |
. . . . . . . 8
|
| 51 | 36, 50 | anbi12i 733 |
. . . . . . 7
|
| 52 | anidm 676 |
. . . . . . 7
| |
| 53 | anandir 872 |
. . . . . . . . 9
| |
| 54 | 53 | 2ralbii 2981 |
. . . . . . . 8
|
| 55 | r19.26-2 3065 |
. . . . . . . 8
| |
| 56 | 54, 55 | bitr2i 265 |
. . . . . . 7
|
| 57 | 51, 52, 56 | 3bitr3i 290 |
. . . . . 6
|
| 58 | eluni 4439 |
. . . . . . . . . 10
| |
| 59 | eluni 4439 |
. . . . . . . . . 10
| |
| 60 | 58, 59 | anbi12i 733 |
. . . . . . . . 9
|
| 61 | eeanv 2182 |
. . . . . . . . 9
| |
| 62 | an4 865 |
. . . . . . . . . . 11
| |
| 63 | ancom 466 |
. . . . . . . . . . 11
| |
| 64 | 62, 63 | bitri 264 |
. . . . . . . . . 10
|
| 65 | 64 | 2exbii 1775 |
. . . . . . . . 9
|
| 66 | 60, 61, 65 | 3bitr2i 288 |
. . . . . . . 8
|
| 67 | 66 | imbi1i 339 |
. . . . . . 7
|
| 68 | 19.23v 1902 |
. . . . . . 7
| |
| 69 | r2al 2939 |
. . . . . . . 8
| |
| 70 | impexp 462 |
. . . . . . . . 9
| |
| 71 | 70 | 2albii 1748 |
. . . . . . . 8
|
| 72 | 19.23v 1902 |
. . . . . . . . 9
| |
| 73 | 72 | albii 1747 |
. . . . . . . 8
|
| 74 | 69, 71, 73 | 3bitr2ri 289 |
. . . . . . 7
|
| 75 | 67, 68, 74 | 3bitr2i 288 |
. . . . . 6
|
| 76 | 26, 57, 75 | 3imtr4i 281 |
. . . . 5
|
| 77 | 76 | alrimiv 1855 |
. . . 4
|
| 78 | 77 | alrimivv 1856 |
. . 3
|
| 79 | 7, 78 | syl 17 |
. 2
|
| 80 | dffun4 5900 |
. 2
| |
| 81 | 5, 79, 80 | sylanbrc 698 |
1
|
| Colors of variables: wff setvar class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1722 ax-4 1737 ax-5 1839 ax-6 1888 ax-7 1935 ax-9 1999 ax-10 2019 ax-11 2034 ax-12 2047 ax-13 2246 ax-ext 2602 ax-sep 4781 ax-nul 4789 ax-pr 4906 |
| This theorem depends on definitions: df-bi 197 df-or 385 df-an 386 df-3an 1039 df-tru 1486 df-ex 1705 df-nf 1710 df-sb 1881 df-eu 2474 df-mo 2475 df-clab 2609 df-cleq 2615 df-clel 2618 df-nfc 2753 df-ral 2917 df-rex 2918 df-rab 2921 df-v 3202 df-dif 3577 df-un 3579 df-in 3581 df-ss 3588 df-nul 3916 df-if 4087 df-sn 4178 df-pr 4180 df-op 4184 df-uni 4437 df-iun 4522 df-br 4654 df-opab 4713 df-id 5024 df-rel 5121 df-cnv 5122 df-co 5123 df-fun 5890 |
| This theorem is referenced by: funcnvuni 7119 fun11uni 7120 axdc3lem2 9273 |
| Copyright terms: Public domain | W3C validator |