MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  arwass Structured version   Visualization version   Unicode version

Theorem arwass 16724
Description: Associativity of composition in a category using arrow notation. (Contributed by Mario Carneiro, 11-Jan-2017.)
Hypotheses
Ref Expression
arwlid.h  |-  H  =  (Homa
`  C )
arwlid.o  |-  .x.  =  (compa `  C )
arwlid.a  |-  .1.  =  (Ida `  C )
arwlid.f  |-  ( ph  ->  F  e.  ( X H Y ) )
arwass.g  |-  ( ph  ->  G  e.  ( Y H Z ) )
arwass.k  |-  ( ph  ->  K  e.  ( Z H W ) )
Assertion
Ref Expression
arwass  |-  ( ph  ->  ( ( K  .x.  G )  .x.  F
)  =  ( K 
.x.  ( G  .x.  F ) ) )

Proof of Theorem arwass
StepHypRef Expression
1 eqid 2622 . . . . 5  |-  ( Base `  C )  =  (
Base `  C )
2 eqid 2622 . . . . 5  |-  ( Hom  `  C )  =  ( Hom  `  C )
3 eqid 2622 . . . . 5  |-  (comp `  C )  =  (comp `  C )
4 arwlid.f . . . . . 6  |-  ( ph  ->  F  e.  ( X H Y ) )
5 arwlid.h . . . . . . 7  |-  H  =  (Homa
`  C )
65homarcl 16678 . . . . . 6  |-  ( F  e.  ( X H Y )  ->  C  e.  Cat )
74, 6syl 17 . . . . 5  |-  ( ph  ->  C  e.  Cat )
85, 1homarcl2 16685 . . . . . . 7  |-  ( F  e.  ( X H Y )  ->  ( X  e.  ( Base `  C )  /\  Y  e.  ( Base `  C
) ) )
94, 8syl 17 . . . . . 6  |-  ( ph  ->  ( X  e.  (
Base `  C )  /\  Y  e.  ( Base `  C ) ) )
109simpld 475 . . . . 5  |-  ( ph  ->  X  e.  ( Base `  C ) )
119simprd 479 . . . . 5  |-  ( ph  ->  Y  e.  ( Base `  C ) )
12 arwass.k . . . . . . 7  |-  ( ph  ->  K  e.  ( Z H W ) )
135, 1homarcl2 16685 . . . . . . 7  |-  ( K  e.  ( Z H W )  ->  ( Z  e.  ( Base `  C )  /\  W  e.  ( Base `  C
) ) )
1412, 13syl 17 . . . . . 6  |-  ( ph  ->  ( Z  e.  (
Base `  C )  /\  W  e.  ( Base `  C ) ) )
1514simpld 475 . . . . 5  |-  ( ph  ->  Z  e.  ( Base `  C ) )
165, 2homahom 16689 . . . . . 6  |-  ( F  e.  ( X H Y )  ->  ( 2nd `  F )  e.  ( X ( Hom  `  C ) Y ) )
174, 16syl 17 . . . . 5  |-  ( ph  ->  ( 2nd `  F
)  e.  ( X ( Hom  `  C
) Y ) )
18 arwass.g . . . . . 6  |-  ( ph  ->  G  e.  ( Y H Z ) )
195, 2homahom 16689 . . . . . 6  |-  ( G  e.  ( Y H Z )  ->  ( 2nd `  G )  e.  ( Y ( Hom  `  C ) Z ) )
2018, 19syl 17 . . . . 5  |-  ( ph  ->  ( 2nd `  G
)  e.  ( Y ( Hom  `  C
) Z ) )
2114simprd 479 . . . . 5  |-  ( ph  ->  W  e.  ( Base `  C ) )
225, 2homahom 16689 . . . . . 6  |-  ( K  e.  ( Z H W )  ->  ( 2nd `  K )  e.  ( Z ( Hom  `  C ) W ) )
2312, 22syl 17 . . . . 5  |-  ( ph  ->  ( 2nd `  K
)  e.  ( Z ( Hom  `  C
) W ) )
241, 2, 3, 7, 10, 11, 15, 17, 20, 21, 23catass 16347 . . . 4  |-  ( ph  ->  ( ( ( 2nd `  K ) ( <. Y ,  Z >. (comp `  C ) W ) ( 2nd `  G
) ) ( <. X ,  Y >. (comp `  C ) W ) ( 2nd `  F
) )  =  ( ( 2nd `  K
) ( <. X ,  Z >. (comp `  C
) W ) ( ( 2nd `  G
) ( <. X ,  Y >. (comp `  C
) Z ) ( 2nd `  F ) ) ) )
25 arwlid.o . . . . . 6  |-  .x.  =  (compa `  C )
2625, 5, 18, 12, 3coa2 16719 . . . . 5  |-  ( ph  ->  ( 2nd `  ( K  .x.  G ) )  =  ( ( 2nd `  K ) ( <. Y ,  Z >. (comp `  C ) W ) ( 2nd `  G
) ) )
2726oveq1d 6665 . . . 4  |-  ( ph  ->  ( ( 2nd `  ( K  .x.  G ) ) ( <. X ,  Y >. (comp `  C ) W ) ( 2nd `  F ) )  =  ( ( ( 2nd `  K ) ( <. Y ,  Z >. (comp `  C ) W ) ( 2nd `  G
) ) ( <. X ,  Y >. (comp `  C ) W ) ( 2nd `  F
) ) )
2825, 5, 4, 18, 3coa2 16719 . . . . 5  |-  ( ph  ->  ( 2nd `  ( G  .x.  F ) )  =  ( ( 2nd `  G ) ( <. X ,  Y >. (comp `  C ) Z ) ( 2nd `  F
) ) )
2928oveq2d 6666 . . . 4  |-  ( ph  ->  ( ( 2nd `  K
) ( <. X ,  Z >. (comp `  C
) W ) ( 2nd `  ( G 
.x.  F ) ) )  =  ( ( 2nd `  K ) ( <. X ,  Z >. (comp `  C ) W ) ( ( 2nd `  G ) ( <. X ,  Y >. (comp `  C ) Z ) ( 2nd `  F ) ) ) )
3024, 27, 293eqtr4d 2666 . . 3  |-  ( ph  ->  ( ( 2nd `  ( K  .x.  G ) ) ( <. X ,  Y >. (comp `  C ) W ) ( 2nd `  F ) )  =  ( ( 2nd `  K
) ( <. X ,  Z >. (comp `  C
) W ) ( 2nd `  ( G 
.x.  F ) ) ) )
3130oteq3d 4416 . 2  |-  ( ph  -> 
<. X ,  W , 
( ( 2nd `  ( K  .x.  G ) ) ( <. X ,  Y >. (comp `  C ) W ) ( 2nd `  F ) ) >.  =  <. X ,  W ,  ( ( 2nd `  K ) ( <. X ,  Z >. (comp `  C ) W ) ( 2nd `  ( G  .x.  F ) ) ) >. )
3225, 5, 18, 12coahom 16720 . . 3  |-  ( ph  ->  ( K  .x.  G
)  e.  ( Y H W ) )
3325, 5, 4, 32, 3coaval 16718 . 2  |-  ( ph  ->  ( ( K  .x.  G )  .x.  F
)  =  <. X ,  W ,  ( ( 2nd `  ( K  .x.  G ) ) (
<. X ,  Y >. (comp `  C ) W ) ( 2nd `  F
) ) >. )
3425, 5, 4, 18coahom 16720 . . 3  |-  ( ph  ->  ( G  .x.  F
)  e.  ( X H Z ) )
3525, 5, 34, 12, 3coaval 16718 . 2  |-  ( ph  ->  ( K  .x.  ( G  .x.  F ) )  =  <. X ,  W ,  ( ( 2nd `  K ) ( <. X ,  Z >. (comp `  C ) W ) ( 2nd `  ( G  .x.  F ) ) ) >. )
3631, 33, 353eqtr4d 2666 1  |-  ( ph  ->  ( ( K  .x.  G )  .x.  F
)  =  ( K 
.x.  ( G  .x.  F ) ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    /\ wa 384    = wceq 1483    e. wcel 1990   <.cop 4183   <.cotp 4185   ` cfv 5888  (class class class)co 6650   2ndc2nd 7167   Basecbs 15857   Hom chom 15952  compcco 15953   Catccat 16325  Homachoma 16673  Idacida 16703  compaccoa 16704
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-ral 2917  df-rex 2918  df-reu 2919  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-op 4184  df-ot 4186  df-uni 4437  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-id 5024  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-1st 7168  df-2nd 7169  df-cat 16329  df-doma 16674  df-coda 16675  df-homa 16676  df-arw 16677  df-coa 16706
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator