MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ex-ind-dvds Structured version   Visualization version   Unicode version

Theorem ex-ind-dvds 27318
Description: Example of a proof by induction (divisibility result). (Contributed by Stanislas Polu, 9-Mar-2020.) (Revised by BJ, 24-Mar-2020.)
Assertion
Ref Expression
ex-ind-dvds  |-  ( N  e.  NN0  ->  3  ||  ( ( 4 ^ N )  +  2 ) )

Proof of Theorem ex-ind-dvds
Dummy variables  k  n are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 oveq2 6658 . . . 4  |-  ( k  =  0  ->  (
4 ^ k )  =  ( 4 ^ 0 ) )
21oveq1d 6665 . . 3  |-  ( k  =  0  ->  (
( 4 ^ k
)  +  2 )  =  ( ( 4 ^ 0 )  +  2 ) )
32breq2d 4665 . 2  |-  ( k  =  0  ->  (
3  ||  ( (
4 ^ k )  +  2 )  <->  3  ||  ( ( 4 ^ 0 )  +  2 ) ) )
4 oveq2 6658 . . . 4  |-  ( k  =  n  ->  (
4 ^ k )  =  ( 4 ^ n ) )
54oveq1d 6665 . . 3  |-  ( k  =  n  ->  (
( 4 ^ k
)  +  2 )  =  ( ( 4 ^ n )  +  2 ) )
65breq2d 4665 . 2  |-  ( k  =  n  ->  (
3  ||  ( (
4 ^ k )  +  2 )  <->  3  ||  ( ( 4 ^ n )  +  2 ) ) )
7 oveq2 6658 . . . 4  |-  ( k  =  ( n  + 
1 )  ->  (
4 ^ k )  =  ( 4 ^ ( n  +  1 ) ) )
87oveq1d 6665 . . 3  |-  ( k  =  ( n  + 
1 )  ->  (
( 4 ^ k
)  +  2 )  =  ( ( 4 ^ ( n  + 
1 ) )  +  2 ) )
98breq2d 4665 . 2  |-  ( k  =  ( n  + 
1 )  ->  (
3  ||  ( (
4 ^ k )  +  2 )  <->  3  ||  ( ( 4 ^ ( n  +  1 ) )  +  2 ) ) )
10 oveq2 6658 . . . 4  |-  ( k  =  N  ->  (
4 ^ k )  =  ( 4 ^ N ) )
1110oveq1d 6665 . . 3  |-  ( k  =  N  ->  (
( 4 ^ k
)  +  2 )  =  ( ( 4 ^ N )  +  2 ) )
1211breq2d 4665 . 2  |-  ( k  =  N  ->  (
3  ||  ( (
4 ^ k )  +  2 )  <->  3  ||  ( ( 4 ^ N )  +  2 ) ) )
13 3z 11410 . . . 4  |-  3  e.  ZZ
14 iddvds 14995 . . . 4  |-  ( 3  e.  ZZ  ->  3  ||  3 )
1513, 14ax-mp 5 . . 3  |-  3  ||  3
16 4nn0 11311 . . . . . 6  |-  4  e.  NN0
1716numexp0 15780 . . . . 5  |-  ( 4 ^ 0 )  =  1
1817oveq1i 6660 . . . 4  |-  ( ( 4 ^ 0 )  +  2 )  =  ( 1  +  2 )
19 1p2e3 11152 . . . 4  |-  ( 1  +  2 )  =  3
2018, 19eqtri 2644 . . 3  |-  ( ( 4 ^ 0 )  +  2 )  =  3
2115, 20breqtrri 4680 . 2  |-  3  ||  ( ( 4 ^ 0 )  +  2 )
2213a1i 11 . . . . 5  |-  ( ( n  e.  NN0  /\  3  ||  ( ( 4 ^ n )  +  2 ) )  -> 
3  e.  ZZ )
2316a1i 11 . . . . . . . . . 10  |-  ( n  e.  NN0  ->  4  e. 
NN0 )
24 id 22 . . . . . . . . . 10  |-  ( n  e.  NN0  ->  n  e. 
NN0 )
2523, 24nn0expcld 13031 . . . . . . . . 9  |-  ( n  e.  NN0  ->  ( 4 ^ n )  e. 
NN0 )
2625nn0zd 11480 . . . . . . . 8  |-  ( n  e.  NN0  ->  ( 4 ^ n )  e.  ZZ )
2726adantr 481 . . . . . . 7  |-  ( ( n  e.  NN0  /\  3  ||  ( ( 4 ^ n )  +  2 ) )  -> 
( 4 ^ n
)  e.  ZZ )
28 2z 11409 . . . . . . . 8  |-  2  e.  ZZ
2928a1i 11 . . . . . . 7  |-  ( ( n  e.  NN0  /\  3  ||  ( ( 4 ^ n )  +  2 ) )  -> 
2  e.  ZZ )
3027, 29zaddcld 11486 . . . . . 6  |-  ( ( n  e.  NN0  /\  3  ||  ( ( 4 ^ n )  +  2 ) )  -> 
( ( 4 ^ n )  +  2 )  e.  ZZ )
31 4z 11411 . . . . . . 7  |-  4  e.  ZZ
3231a1i 11 . . . . . 6  |-  ( ( n  e.  NN0  /\  3  ||  ( ( 4 ^ n )  +  2 ) )  -> 
4  e.  ZZ )
33 simpr 477 . . . . . 6  |-  ( ( n  e.  NN0  /\  3  ||  ( ( 4 ^ n )  +  2 ) )  -> 
3  ||  ( (
4 ^ n )  +  2 ) )
3422, 30, 32, 33dvdsmultr1d 15020 . . . . 5  |-  ( ( n  e.  NN0  /\  3  ||  ( ( 4 ^ n )  +  2 ) )  -> 
3  ||  ( (
( 4 ^ n
)  +  2 )  x.  4 ) )
35 dvdsmul1 15003 . . . . . . 7  |-  ( ( 3  e.  ZZ  /\  2  e.  ZZ )  ->  3  ||  ( 3  x.  2 ) )
3613, 28, 35mp2an 708 . . . . . 6  |-  3  ||  ( 3  x.  2 )
3736a1i 11 . . . . 5  |-  ( ( n  e.  NN0  /\  3  ||  ( ( 4 ^ n )  +  2 ) )  -> 
3  ||  ( 3  x.  2 ) )
3816a1i 11 . . . . . . . . 9  |-  ( ( n  e.  NN0  /\  3  ||  ( ( 4 ^ n )  +  2 ) )  -> 
4  e.  NN0 )
39 simpl 473 . . . . . . . . 9  |-  ( ( n  e.  NN0  /\  3  ||  ( ( 4 ^ n )  +  2 ) )  ->  n  e.  NN0 )
4038, 39nn0expcld 13031 . . . . . . . 8  |-  ( ( n  e.  NN0  /\  3  ||  ( ( 4 ^ n )  +  2 ) )  -> 
( 4 ^ n
)  e.  NN0 )
4140nn0zd 11480 . . . . . . 7  |-  ( ( n  e.  NN0  /\  3  ||  ( ( 4 ^ n )  +  2 ) )  -> 
( 4 ^ n
)  e.  ZZ )
4241, 29zaddcld 11486 . . . . . 6  |-  ( ( n  e.  NN0  /\  3  ||  ( ( 4 ^ n )  +  2 ) )  -> 
( ( 4 ^ n )  +  2 )  e.  ZZ )
4342, 32zmulcld 11488 . . . . 5  |-  ( ( n  e.  NN0  /\  3  ||  ( ( 4 ^ n )  +  2 ) )  -> 
( ( ( 4 ^ n )  +  2 )  x.  4 )  e.  ZZ )
4422, 29zmulcld 11488 . . . . 5  |-  ( ( n  e.  NN0  /\  3  ||  ( ( 4 ^ n )  +  2 ) )  -> 
( 3  x.  2 )  e.  ZZ )
4522, 34, 37, 43, 44dvds2subd 15017 . . . 4  |-  ( ( n  e.  NN0  /\  3  ||  ( ( 4 ^ n )  +  2 ) )  -> 
3  ||  ( (
( ( 4 ^ n )  +  2 )  x.  4 )  -  ( 3  x.  2 ) ) )
4625nn0cnd 11353 . . . . . . . 8  |-  ( n  e.  NN0  ->  ( 4 ^ n )  e.  CC )
47 2cnd 11093 . . . . . . . 8  |-  ( n  e.  NN0  ->  2  e.  CC )
48 4cn 11098 . . . . . . . . 9  |-  4  e.  CC
4948a1i 11 . . . . . . . 8  |-  ( n  e.  NN0  ->  4  e.  CC )
5046, 47, 49adddird 10065 . . . . . . 7  |-  ( n  e.  NN0  ->  ( ( ( 4 ^ n
)  +  2 )  x.  4 )  =  ( ( ( 4 ^ n )  x.  4 )  +  ( 2  x.  4 ) ) )
5150oveq1d 6665 . . . . . 6  |-  ( n  e.  NN0  ->  ( ( ( ( 4 ^ n )  +  2 )  x.  4 )  -  ( 2  x.  3 ) )  =  ( ( ( ( 4 ^ n )  x.  4 )  +  ( 2  x.  4 ) )  -  (
2  x.  3 ) ) )
52 3cn 11095 . . . . . . . . 9  |-  3  e.  CC
53 2cn 11091 . . . . . . . . 9  |-  2  e.  CC
5452, 53mulcomi 10046 . . . . . . . 8  |-  ( 3  x.  2 )  =  ( 2  x.  3 )
5554a1i 11 . . . . . . 7  |-  ( n  e.  NN0  ->  ( 3  x.  2 )  =  ( 2  x.  3 ) )
5655oveq2d 6666 . . . . . 6  |-  ( n  e.  NN0  ->  ( ( ( ( 4 ^ n )  +  2 )  x.  4 )  -  ( 3  x.  2 ) )  =  ( ( ( ( 4 ^ n )  +  2 )  x.  4 )  -  (
2  x.  3 ) ) )
5749, 24expp1d 13009 . . . . . . . 8  |-  ( n  e.  NN0  ->  ( 4 ^ ( n  + 
1 ) )  =  ( ( 4 ^ n )  x.  4 ) )
58 ax-1cn 9994 . . . . . . . . . . . . . . 15  |-  1  e.  CC
59 3p1e4 11153 . . . . . . . . . . . . . . 15  |-  ( 3  +  1 )  =  4
6052, 58, 59addcomli 10228 . . . . . . . . . . . . . 14  |-  ( 1  +  3 )  =  4
6160eqcomi 2631 . . . . . . . . . . . . 13  |-  4  =  ( 1  +  3 )
6261oveq1i 6660 . . . . . . . . . . . 12  |-  ( 4  -  3 )  =  ( ( 1  +  3 )  -  3 )
6358, 52pncan3oi 10297 . . . . . . . . . . . 12  |-  ( ( 1  +  3 )  -  3 )  =  1
6462, 63eqtri 2644 . . . . . . . . . . 11  |-  ( 4  -  3 )  =  1
6564oveq2i 6661 . . . . . . . . . 10  |-  ( 2  x.  ( 4  -  3 ) )  =  ( 2  x.  1 )
6653, 48, 52subdii 10479 . . . . . . . . . 10  |-  ( 2  x.  ( 4  -  3 ) )  =  ( ( 2  x.  4 )  -  (
2  x.  3 ) )
67 2t1e2 11176 . . . . . . . . . 10  |-  ( 2  x.  1 )  =  2
6865, 66, 673eqtr3ri 2653 . . . . . . . . 9  |-  2  =  ( ( 2  x.  4 )  -  ( 2  x.  3 ) )
6968a1i 11 . . . . . . . 8  |-  ( n  e.  NN0  ->  2  =  ( ( 2  x.  4 )  -  (
2  x.  3 ) ) )
7057, 69oveq12d 6668 . . . . . . 7  |-  ( n  e.  NN0  ->  ( ( 4 ^ ( n  +  1 ) )  +  2 )  =  ( ( ( 4 ^ n )  x.  4 )  +  ( ( 2  x.  4 )  -  ( 2  x.  3 ) ) ) )
7146, 49mulcld 10060 . . . . . . . 8  |-  ( n  e.  NN0  ->  ( ( 4 ^ n )  x.  4 )  e.  CC )
7247, 49mulcld 10060 . . . . . . . 8  |-  ( n  e.  NN0  ->  ( 2  x.  4 )  e.  CC )
7352a1i 11 . . . . . . . . 9  |-  ( n  e.  NN0  ->  3  e.  CC )
7447, 73mulcld 10060 . . . . . . . 8  |-  ( n  e.  NN0  ->  ( 2  x.  3 )  e.  CC )
7571, 72, 74addsubassd 10412 . . . . . . 7  |-  ( n  e.  NN0  ->  ( ( ( ( 4 ^ n )  x.  4 )  +  ( 2  x.  4 ) )  -  ( 2  x.  3 ) )  =  ( ( ( 4 ^ n )  x.  4 )  +  ( ( 2  x.  4 )  -  ( 2  x.  3 ) ) ) )
7670, 75eqtr4d 2659 . . . . . 6  |-  ( n  e.  NN0  ->  ( ( 4 ^ ( n  +  1 ) )  +  2 )  =  ( ( ( ( 4 ^ n )  x.  4 )  +  ( 2  x.  4 ) )  -  (
2  x.  3 ) ) )
7751, 56, 763eqtr4rd 2667 . . . . 5  |-  ( n  e.  NN0  ->  ( ( 4 ^ ( n  +  1 ) )  +  2 )  =  ( ( ( ( 4 ^ n )  +  2 )  x.  4 )  -  (
3  x.  2 ) ) )
7877adantr 481 . . . 4  |-  ( ( n  e.  NN0  /\  3  ||  ( ( 4 ^ n )  +  2 ) )  -> 
( ( 4 ^ ( n  +  1 ) )  +  2 )  =  ( ( ( ( 4 ^ n )  +  2 )  x.  4 )  -  ( 3  x.  2 ) ) )
7945, 78breqtrrd 4681 . . 3  |-  ( ( n  e.  NN0  /\  3  ||  ( ( 4 ^ n )  +  2 ) )  -> 
3  ||  ( (
4 ^ ( n  +  1 ) )  +  2 ) )
8079ex 450 . 2  |-  ( n  e.  NN0  ->  ( 3 
||  ( ( 4 ^ n )  +  2 )  ->  3  ||  ( ( 4 ^ ( n  +  1 ) )  +  2 ) ) )
813, 6, 9, 12, 21, 80nn0ind 11472 1  |-  ( N  e.  NN0  ->  3  ||  ( ( 4 ^ N )  +  2 ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    /\ wa 384    = wceq 1483    e. wcel 1990   class class class wbr 4653  (class class class)co 6650   CCcc 9934   0cc0 9936   1c1 9937    + caddc 9939    x. cmul 9941    - cmin 10266   2c2 11070   3c3 11071   4c4 11072   NN0cn0 11292   ZZcz 11377   ^cexp 12860    || cdvds 14983
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-cnex 9992  ax-resscn 9993  ax-1cn 9994  ax-icn 9995  ax-addcl 9996  ax-addrcl 9997  ax-mulcl 9998  ax-mulrcl 9999  ax-mulcom 10000  ax-addass 10001  ax-mulass 10002  ax-distr 10003  ax-i2m1 10004  ax-1ne0 10005  ax-1rid 10006  ax-rnegex 10007  ax-rrecex 10008  ax-cnre 10009  ax-pre-lttri 10010  ax-pre-lttrn 10011  ax-pre-ltadd 10012  ax-pre-mulgt0 10013
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-nel 2898  df-ral 2917  df-rex 2918  df-reu 2919  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-pred 5680  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-riota 6611  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-om 7066  df-2nd 7169  df-wrecs 7407  df-recs 7468  df-rdg 7506  df-er 7742  df-en 7956  df-dom 7957  df-sdom 7958  df-pnf 10076  df-mnf 10077  df-xr 10078  df-ltxr 10079  df-le 10080  df-sub 10268  df-neg 10269  df-nn 11021  df-2 11079  df-3 11080  df-4 11081  df-n0 11293  df-z 11378  df-uz 11688  df-seq 12802  df-exp 12861  df-dvds 14984
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator