| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > axinfndlem1 | Structured version Visualization version Unicode version | ||
| Description: Lemma for the Axiom of Infinity with no distinct variable conditions. (New usage is discouraged.) (Contributed by NM, 5-Jan-2002.) |
| Ref | Expression |
|---|---|
| axinfndlem1 |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | zfinf 8536 |
. . . . 5
| |
| 2 | nfnae 2318 |
. . . . . . 7
| |
| 3 | nfnae 2318 |
. . . . . . 7
| |
| 4 | 2, 3 | nfan 1828 |
. . . . . 6
|
| 5 | nfcvf 2788 |
. . . . . . . . 9
| |
| 6 | 5 | adantr 481 |
. . . . . . . 8
|
| 7 | nfcvd 2765 |
. . . . . . . 8
| |
| 8 | 6, 7 | nfeld 2773 |
. . . . . . 7
|
| 9 | nfnae 2318 |
. . . . . . . . 9
| |
| 10 | nfnae 2318 |
. . . . . . . . 9
| |
| 11 | 9, 10 | nfan 1828 |
. . . . . . . 8
|
| 12 | nfnae 2318 |
. . . . . . . . . . 11
| |
| 13 | nfnae 2318 |
. . . . . . . . . . 11
| |
| 14 | 12, 13 | nfan 1828 |
. . . . . . . . . 10
|
| 15 | nfcvf 2788 |
. . . . . . . . . . . . 13
| |
| 16 | 15 | adantl 482 |
. . . . . . . . . . . 12
|
| 17 | 6, 16 | nfeld 2773 |
. . . . . . . . . . 11
|
| 18 | 16, 7 | nfeld 2773 |
. . . . . . . . . . 11
|
| 19 | 17, 18 | nfand 1826 |
. . . . . . . . . 10
|
| 20 | 14, 19 | nfexd 2167 |
. . . . . . . . 9
|
| 21 | 8, 20 | nfimd 1823 |
. . . . . . . 8
|
| 22 | 11, 21 | nfald 2165 |
. . . . . . 7
|
| 23 | 8, 22 | nfand 1826 |
. . . . . 6
|
| 24 | simpr 477 |
. . . . . . . . 9
| |
| 25 | 24 | eleq2d 2687 |
. . . . . . . 8
|
| 26 | nfcvd 2765 |
. . . . . . . . . . 11
| |
| 27 | nfcvf2 2789 |
. . . . . . . . . . . 12
| |
| 28 | 27 | adantr 481 |
. . . . . . . . . . 11
|
| 29 | 26, 28 | nfeqd 2772 |
. . . . . . . . . 10
|
| 30 | 11, 29 | nfan1 2068 |
. . . . . . . . 9
|
| 31 | nfcvd 2765 |
. . . . . . . . . . . . 13
| |
| 32 | nfcvf2 2789 |
. . . . . . . . . . . . . 14
| |
| 33 | 32 | adantl 482 |
. . . . . . . . . . . . 13
|
| 34 | 31, 33 | nfeqd 2772 |
. . . . . . . . . . . 12
|
| 35 | 14, 34 | nfan1 2068 |
. . . . . . . . . . 11
|
| 36 | elequ2 2004 |
. . . . . . . . . . . . 13
| |
| 37 | 36 | anbi2d 740 |
. . . . . . . . . . . 12
|
| 38 | 37 | adantl 482 |
. . . . . . . . . . 11
|
| 39 | 35, 38 | exbid 2091 |
. . . . . . . . . 10
|
| 40 | 25, 39 | imbi12d 334 |
. . . . . . . . 9
|
| 41 | 30, 40 | albid 2090 |
. . . . . . . 8
|
| 42 | 25, 41 | anbi12d 747 |
. . . . . . 7
|
| 43 | 42 | ex 450 |
. . . . . 6
|
| 44 | 4, 23, 43 | cbvexd 2278 |
. . . . 5
|
| 45 | 1, 44 | mpbii 223 |
. . . 4
|
| 46 | 45 | a1d 25 |
. . 3
|
| 47 | 46 | ex 450 |
. 2
|
| 48 | nd1 9409 |
. . 3
| |
| 49 | 48 | pm2.21d 118 |
. 2
|
| 50 | nd2 9410 |
. . 3
| |
| 51 | 50 | pm2.21d 118 |
. 2
|
| 52 | 47, 49, 51 | pm2.61ii 177 |
1
|
| Colors of variables: wff setvar class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1722 ax-4 1737 ax-5 1839 ax-6 1888 ax-7 1935 ax-8 1992 ax-9 1999 ax-10 2019 ax-11 2034 ax-12 2047 ax-13 2246 ax-ext 2602 ax-sep 4781 ax-nul 4789 ax-pr 4906 ax-reg 8497 ax-inf 8535 |
| This theorem depends on definitions: df-bi 197 df-or 385 df-an 386 df-tru 1486 df-ex 1705 df-nf 1710 df-sb 1881 df-clab 2609 df-cleq 2615 df-clel 2618 df-nfc 2753 df-ral 2917 df-rex 2918 df-v 3202 df-dif 3577 df-un 3579 df-nul 3916 df-sn 4178 df-pr 4180 |
| This theorem is referenced by: axinfnd 9428 |
| Copyright terms: Public domain | W3C validator |