| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > axregnd | Structured version Visualization version Unicode version | ||
| Description: A version of the Axiom of Regularity with no distinct variable conditions. (Contributed by NM, 3-Jan-2002.) (Proof shortened by Wolf Lammen, 18-Aug-2019.) |
| Ref | Expression |
|---|---|
| axregnd |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | axregndlem2 9425 |
. . . 4
| |
| 2 | nfnae 2318 |
. . . . . 6
| |
| 3 | nfnae 2318 |
. . . . . 6
| |
| 4 | 2, 3 | nfan 1828 |
. . . . 5
|
| 5 | nfnae 2318 |
. . . . . . . 8
| |
| 6 | nfnae 2318 |
. . . . . . . 8
| |
| 7 | 5, 6 | nfan 1828 |
. . . . . . 7
|
| 8 | nfcvf 2788 |
. . . . . . . . . 10
| |
| 9 | 8 | nfcrd 2771 |
. . . . . . . . 9
|
| 10 | 9 | adantr 481 |
. . . . . . . 8
|
| 11 | nfcvf 2788 |
. . . . . . . . . . 11
| |
| 12 | 11 | nfcrd 2771 |
. . . . . . . . . 10
|
| 13 | 12 | nfnd 1785 |
. . . . . . . . 9
|
| 14 | 13 | adantl 482 |
. . . . . . . 8
|
| 15 | 10, 14 | nfimd 1823 |
. . . . . . 7
|
| 16 | elequ1 1997 |
. . . . . . . . 9
| |
| 17 | elequ1 1997 |
. . . . . . . . . 10
| |
| 18 | 17 | notbid 308 |
. . . . . . . . 9
|
| 19 | 16, 18 | imbi12d 334 |
. . . . . . . 8
|
| 20 | 19 | a1i 11 |
. . . . . . 7
|
| 21 | 7, 15, 20 | cbvald 2277 |
. . . . . 6
|
| 22 | 21 | anbi2d 740 |
. . . . 5
|
| 23 | 4, 22 | exbid 2091 |
. . . 4
|
| 24 | 1, 23 | syl5ib 234 |
. . 3
|
| 25 | 24 | ex 450 |
. 2
|
| 26 | axregndlem1 9424 |
. . 3
| |
| 27 | 26 | aecoms 2312 |
. 2
|
| 28 | 19.8a 2052 |
. . 3
| |
| 29 | nfae 2316 |
. . . 4
| |
| 30 | elirrv 8504 |
. . . . . . . . 9
| |
| 31 | elequ2 2004 |
. . . . . . . . 9
| |
| 32 | 30, 31 | mtbii 316 |
. . . . . . . 8
|
| 33 | 32 | a1d 25 |
. . . . . . 7
|
| 34 | 33 | alimi 1739 |
. . . . . 6
|
| 35 | 34 | anim2i 593 |
. . . . 5
|
| 36 | 35 | expcom 451 |
. . . 4
|
| 37 | 29, 36 | eximd 2085 |
. . 3
|
| 38 | 28, 37 | syl5 34 |
. 2
|
| 39 | 25, 27, 38 | pm2.61ii 177 |
1
|
| Colors of variables: wff setvar class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1722 ax-4 1737 ax-5 1839 ax-6 1888 ax-7 1935 ax-8 1992 ax-9 1999 ax-10 2019 ax-11 2034 ax-12 2047 ax-13 2246 ax-ext 2602 ax-sep 4781 ax-nul 4789 ax-pr 4906 ax-reg 8497 |
| This theorem depends on definitions: df-bi 197 df-or 385 df-an 386 df-tru 1486 df-ex 1705 df-nf 1710 df-sb 1881 df-clab 2609 df-cleq 2615 df-clel 2618 df-nfc 2753 df-ral 2917 df-rex 2918 df-v 3202 df-dif 3577 df-un 3579 df-nul 3916 df-sn 4178 df-pr 4180 |
| This theorem is referenced by: zfcndreg 9439 axregprim 31582 |
| Copyright terms: Public domain | W3C validator |