Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  ballss3 Structured version   Visualization version   Unicode version

Theorem ballss3 39270
Description: A sufficient condition for a  ball being a subset. (Contributed by Glauco Siliprandi, 8-Apr-2021.)
Hypotheses
Ref Expression
ballss3.y  |-  F/ x ph
ballss3.d  |-  ( ph  ->  D  e.  (PsMet `  X ) )
ballss3.p  |-  ( ph  ->  P  e.  X )
ballss3.r  |-  ( ph  ->  R  e.  RR* )
ballss3.a  |-  ( (
ph  /\  x  e.  X  /\  ( P D x )  <  R
)  ->  x  e.  A )
Assertion
Ref Expression
ballss3  |-  ( ph  ->  ( P ( ball `  D ) R ) 
C_  A )
Distinct variable groups:    x, A    x, D    x, P    x, R
Allowed substitution hints:    ph( x)    X( x)

Proof of Theorem ballss3
StepHypRef Expression
1 ballss3.y . . 3  |-  F/ x ph
2 simpl 473 . . . . 5  |-  ( (
ph  /\  x  e.  ( P ( ball `  D
) R ) )  ->  ph )
3 simpr 477 . . . . . . 7  |-  ( (
ph  /\  x  e.  ( P ( ball `  D
) R ) )  ->  x  e.  ( P ( ball `  D
) R ) )
4 ballss3.d . . . . . . . . 9  |-  ( ph  ->  D  e.  (PsMet `  X ) )
5 ballss3.p . . . . . . . . 9  |-  ( ph  ->  P  e.  X )
6 ballss3.r . . . . . . . . 9  |-  ( ph  ->  R  e.  RR* )
7 elblps 22192 . . . . . . . . 9  |-  ( ( D  e.  (PsMet `  X )  /\  P  e.  X  /\  R  e. 
RR* )  ->  (
x  e.  ( P ( ball `  D
) R )  <->  ( x  e.  X  /\  ( P D x )  < 
R ) ) )
84, 5, 6, 7syl3anc 1326 . . . . . . . 8  |-  ( ph  ->  ( x  e.  ( P ( ball `  D
) R )  <->  ( x  e.  X  /\  ( P D x )  < 
R ) ) )
98adantr 481 . . . . . . 7  |-  ( (
ph  /\  x  e.  ( P ( ball `  D
) R ) )  ->  ( x  e.  ( P ( ball `  D ) R )  <-> 
( x  e.  X  /\  ( P D x )  <  R ) ) )
103, 9mpbid 222 . . . . . 6  |-  ( (
ph  /\  x  e.  ( P ( ball `  D
) R ) )  ->  ( x  e.  X  /\  ( P D x )  < 
R ) )
1110simpld 475 . . . . 5  |-  ( (
ph  /\  x  e.  ( P ( ball `  D
) R ) )  ->  x  e.  X
)
1210simprd 479 . . . . 5  |-  ( (
ph  /\  x  e.  ( P ( ball `  D
) R ) )  ->  ( P D x )  <  R
)
13 ballss3.a . . . . 5  |-  ( (
ph  /\  x  e.  X  /\  ( P D x )  <  R
)  ->  x  e.  A )
142, 11, 12, 13syl3anc 1326 . . . 4  |-  ( (
ph  /\  x  e.  ( P ( ball `  D
) R ) )  ->  x  e.  A
)
1514ex 450 . . 3  |-  ( ph  ->  ( x  e.  ( P ( ball `  D
) R )  ->  x  e.  A )
)
161, 15ralrimi 2957 . 2  |-  ( ph  ->  A. x  e.  ( P ( ball `  D
) R ) x  e.  A )
17 dfss3 3592 . 2  |-  ( ( P ( ball `  D
) R )  C_  A 
<-> 
A. x  e.  ( P ( ball `  D
) R ) x  e.  A )
1816, 17sylibr 224 1  |-  ( ph  ->  ( P ( ball `  D ) R ) 
C_  A )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 196    /\ wa 384    /\ w3a 1037   F/wnf 1708    e. wcel 1990   A.wral 2912    C_ wss 3574   class class class wbr 4653   ` cfv 5888  (class class class)co 6650   RR*cxr 10073    < clt 10074  PsMetcpsmet 19730   ballcbl 19733
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-cnex 9992  ax-resscn 9993
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-ral 2917  df-rex 2918  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-op 4184  df-uni 4437  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-id 5024  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-fv 5896  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-1st 7168  df-2nd 7169  df-map 7859  df-xr 10078  df-psmet 19738  df-bl 19741
This theorem is referenced by:  ioorrnopnlem  40524
  Copyright terms: Public domain W3C validator