MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  tgioo Structured version   Visualization version   Unicode version

Theorem tgioo 22599
Description: The topology generated by open intervals of reals is the same as the open sets of the standard metric space on the reals. (Contributed by NM, 7-May-2007.) (Revised by Mario Carneiro, 13-Nov-2013.)
Hypotheses
Ref Expression
remet.1  |-  D  =  ( ( abs  o.  -  )  |`  ( RR 
X.  RR ) )
tgioo.2  |-  J  =  ( MetOpen `  D )
Assertion
Ref Expression
tgioo  |-  ( topGen ` 
ran  (,) )  =  J

Proof of Theorem tgioo
Dummy variables  x  y  z  a  b 
v are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 remet.1 . . . 4  |-  D  =  ( ( abs  o.  -  )  |`  ( RR 
X.  RR ) )
21rexmet 22594 . . 3  |-  D  e.  ( *Met `  RR )
3 tgioo.2 . . . 4  |-  J  =  ( MetOpen `  D )
43mopnval 22243 . . 3  |-  ( D  e.  ( *Met `  RR )  ->  J  =  ( topGen `  ran  ( ball `  D )
) )
52, 4ax-mp 5 . 2  |-  J  =  ( topGen `  ran  ( ball `  D ) )
61blssioo 22598 . . 3  |-  ran  ( ball `  D )  C_  ran  (,)
7 elssuni 4467 . . . . . . 7  |-  ( v  e.  ran  (,)  ->  v 
C_  U. ran  (,) )
8 unirnioo 12273 . . . . . . 7  |-  RR  =  U. ran  (,)
97, 8syl6sseqr 3652 . . . . . 6  |-  ( v  e.  ran  (,)  ->  v 
C_  RR )
10 retopbas 22564 . . . . . . . . . 10  |-  ran  (,)  e. 
TopBases
1110a1i 11 . . . . . . . . 9  |-  ( ( v  e.  ran  (,)  /\  x  e.  v )  ->  ran  (,)  e.  TopBases )
12 simpl 473 . . . . . . . . 9  |-  ( ( v  e.  ran  (,)  /\  x  e.  v )  ->  v  e.  ran  (,) )
139sselda 3603 . . . . . . . . . 10  |-  ( ( v  e.  ran  (,)  /\  x  e.  v )  ->  x  e.  RR )
14 1re 10039 . . . . . . . . . . . 12  |-  1  e.  RR
151bl2ioo 22595 . . . . . . . . . . . 12  |-  ( ( x  e.  RR  /\  1  e.  RR )  ->  ( x ( ball `  D ) 1 )  =  ( ( x  -  1 ) (,) ( x  +  1 ) ) )
1614, 15mpan2 707 . . . . . . . . . . 11  |-  ( x  e.  RR  ->  (
x ( ball `  D
) 1 )  =  ( ( x  - 
1 ) (,) (
x  +  1 ) ) )
17 peano2rem 10348 . . . . . . . . . . . . 13  |-  ( x  e.  RR  ->  (
x  -  1 )  e.  RR )
1817rexrd 10089 . . . . . . . . . . . 12  |-  ( x  e.  RR  ->  (
x  -  1 )  e.  RR* )
19 peano2re 10209 . . . . . . . . . . . . 13  |-  ( x  e.  RR  ->  (
x  +  1 )  e.  RR )
2019rexrd 10089 . . . . . . . . . . . 12  |-  ( x  e.  RR  ->  (
x  +  1 )  e.  RR* )
21 ioof 12271 . . . . . . . . . . . . . 14  |-  (,) :
( RR*  X.  RR* ) --> ~P RR
22 ffn 6045 . . . . . . . . . . . . . 14  |-  ( (,)
: ( RR*  X.  RR* )
--> ~P RR  ->  (,)  Fn  ( RR*  X.  RR* )
)
2321, 22ax-mp 5 . . . . . . . . . . . . 13  |-  (,)  Fn  ( RR*  X.  RR* )
24 fnovrn 6809 . . . . . . . . . . . . 13  |-  ( ( (,)  Fn  ( RR*  X. 
RR* )  /\  (
x  -  1 )  e.  RR*  /\  (
x  +  1 )  e.  RR* )  ->  (
( x  -  1 ) (,) ( x  +  1 ) )  e.  ran  (,) )
2523, 24mp3an1 1411 . . . . . . . . . . . 12  |-  ( ( ( x  -  1 )  e.  RR*  /\  (
x  +  1 )  e.  RR* )  ->  (
( x  -  1 ) (,) ( x  +  1 ) )  e.  ran  (,) )
2618, 20, 25syl2anc 693 . . . . . . . . . . 11  |-  ( x  e.  RR  ->  (
( x  -  1 ) (,) ( x  +  1 ) )  e.  ran  (,) )
2716, 26eqeltrd 2701 . . . . . . . . . 10  |-  ( x  e.  RR  ->  (
x ( ball `  D
) 1 )  e. 
ran  (,) )
2813, 27syl 17 . . . . . . . . 9  |-  ( ( v  e.  ran  (,)  /\  x  e.  v )  ->  ( x (
ball `  D )
1 )  e.  ran  (,) )
29 simpr 477 . . . . . . . . . 10  |-  ( ( v  e.  ran  (,)  /\  x  e.  v )  ->  x  e.  v )
30 1rp 11836 . . . . . . . . . . . 12  |-  1  e.  RR+
31 blcntr 22218 . . . . . . . . . . . 12  |-  ( ( D  e.  ( *Met `  RR )  /\  x  e.  RR  /\  1  e.  RR+ )  ->  x  e.  ( x ( ball `  D
) 1 ) )
322, 30, 31mp3an13 1415 . . . . . . . . . . 11  |-  ( x  e.  RR  ->  x  e.  ( x ( ball `  D ) 1 ) )
3313, 32syl 17 . . . . . . . . . 10  |-  ( ( v  e.  ran  (,)  /\  x  e.  v )  ->  x  e.  ( x ( ball `  D
) 1 ) )
3429, 33elind 3798 . . . . . . . . 9  |-  ( ( v  e.  ran  (,)  /\  x  e.  v )  ->  x  e.  ( v  i^i  ( x ( ball `  D
) 1 ) ) )
35 basis2 20755 . . . . . . . . 9  |-  ( ( ( ran  (,)  e.  TopBases  /\  v  e.  ran  (,) )  /\  ( ( x ( ball `  D
) 1 )  e. 
ran  (,)  /\  x  e.  ( v  i^i  (
x ( ball `  D
) 1 ) ) ) )  ->  E. z  e.  ran  (,) ( x  e.  z  /\  z  C_  ( v  i^i  (
x ( ball `  D
) 1 ) ) ) )
3611, 12, 28, 34, 35syl22anc 1327 . . . . . . . 8  |-  ( ( v  e.  ran  (,)  /\  x  e.  v )  ->  E. z  e.  ran  (,) ( x  e.  z  /\  z  C_  (
v  i^i  ( x
( ball `  D )
1 ) ) ) )
37 ovelrn 6810 . . . . . . . . . . 11  |-  ( (,) 
Fn  ( RR*  X.  RR* )  ->  ( z  e. 
ran  (,)  <->  E. a  e.  RR*  E. b  e.  RR*  z  =  ( a (,) b ) ) )
3823, 37ax-mp 5 . . . . . . . . . 10  |-  ( z  e.  ran  (,)  <->  E. a  e.  RR*  E. b  e. 
RR*  z  =  ( a (,) b ) )
39 eleq2 2690 . . . . . . . . . . . . . . 15  |-  ( z  =  ( a (,) b )  ->  (
x  e.  z  <->  x  e.  ( a (,) b
) ) )
40 sseq1 3626 . . . . . . . . . . . . . . 15  |-  ( z  =  ( a (,) b )  ->  (
z  C_  ( v  i^i  ( x ( ball `  D ) 1 ) )  <->  ( a (,) b )  C_  (
v  i^i  ( x
( ball `  D )
1 ) ) ) )
4139, 40anbi12d 747 . . . . . . . . . . . . . 14  |-  ( z  =  ( a (,) b )  ->  (
( x  e.  z  /\  z  C_  (
v  i^i  ( x
( ball `  D )
1 ) ) )  <-> 
( x  e.  ( a (,) b )  /\  ( a (,) b )  C_  (
v  i^i  ( x
( ball `  D )
1 ) ) ) ) )
42 inss2 3834 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( v  i^i  ( x (
ball `  D )
1 ) )  C_  ( x ( ball `  D ) 1 )
43 sstr 3611 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( ( ( a (,) b
)  C_  ( v  i^i  ( x ( ball `  D ) 1 ) )  /\  ( v  i^i  ( x (
ball `  D )
1 ) )  C_  ( x ( ball `  D ) 1 ) )  ->  ( a (,) b )  C_  (
x ( ball `  D
) 1 ) )
4442, 43mpan2 707 . . . . . . . . . . . . . . . . . . . . 21  |-  ( ( a (,) b ) 
C_  ( v  i^i  ( x ( ball `  D ) 1 ) )  ->  ( a (,) b )  C_  (
x ( ball `  D
) 1 ) )
4544adantl 482 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( x  e.  ( a (,) b )  /\  ( a (,) b
)  C_  ( v  i^i  ( x ( ball `  D ) 1 ) ) )  ->  (
a (,) b ) 
C_  ( x (
ball `  D )
1 ) )
46 elioore 12205 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( x  e.  ( a (,) b )  ->  x  e.  RR )
4746adantr 481 . . . . . . . . . . . . . . . . . . . . 21  |-  ( ( x  e.  ( a (,) b )  /\  ( a (,) b
)  C_  ( v  i^i  ( x ( ball `  D ) 1 ) ) )  ->  x  e.  RR )
4847, 16syl 17 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( x  e.  ( a (,) b )  /\  ( a (,) b
)  C_  ( v  i^i  ( x ( ball `  D ) 1 ) ) )  ->  (
x ( ball `  D
) 1 )  =  ( ( x  - 
1 ) (,) (
x  +  1 ) ) )
4945, 48sseqtrd 3641 . . . . . . . . . . . . . . . . . . 19  |-  ( ( x  e.  ( a (,) b )  /\  ( a (,) b
)  C_  ( v  i^i  ( x ( ball `  D ) 1 ) ) )  ->  (
a (,) b ) 
C_  ( ( x  -  1 ) (,) ( x  +  1 ) ) )
50 dfss 3589 . . . . . . . . . . . . . . . . . . 19  |-  ( ( a (,) b ) 
C_  ( ( x  -  1 ) (,) ( x  +  1 ) )  <->  ( a (,) b )  =  ( ( a (,) b
)  i^i  ( (
x  -  1 ) (,) ( x  + 
1 ) ) ) )
5149, 50sylib 208 . . . . . . . . . . . . . . . . . 18  |-  ( ( x  e.  ( a (,) b )  /\  ( a (,) b
)  C_  ( v  i^i  ( x ( ball `  D ) 1 ) ) )  ->  (
a (,) b )  =  ( ( a (,) b )  i^i  ( ( x  - 
1 ) (,) (
x  +  1 ) ) ) )
52 eliooxr 12232 . . . . . . . . . . . . . . . . . . . 20  |-  ( x  e.  ( a (,) b )  ->  (
a  e.  RR*  /\  b  e.  RR* ) )
5318, 20jca 554 . . . . . . . . . . . . . . . . . . . . 21  |-  ( x  e.  RR  ->  (
( x  -  1 )  e.  RR*  /\  (
x  +  1 )  e.  RR* ) )
5446, 53syl 17 . . . . . . . . . . . . . . . . . . . 20  |-  ( x  e.  ( a (,) b )  ->  (
( x  -  1 )  e.  RR*  /\  (
x  +  1 )  e.  RR* ) )
55 iooin 12209 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( ( a  e.  RR*  /\  b  e.  RR* )  /\  ( ( x  - 
1 )  e.  RR*  /\  ( x  +  1 )  e.  RR* )
)  ->  ( (
a (,) b )  i^i  ( ( x  -  1 ) (,) ( x  +  1 ) ) )  =  ( if ( a  <_  ( x  - 
1 ) ,  ( x  -  1 ) ,  a ) (,)
if ( b  <_ 
( x  +  1 ) ,  b ,  ( x  +  1 ) ) ) )
5652, 54, 55syl2anc 693 . . . . . . . . . . . . . . . . . . 19  |-  ( x  e.  ( a (,) b )  ->  (
( a (,) b
)  i^i  ( (
x  -  1 ) (,) ( x  + 
1 ) ) )  =  ( if ( a  <_  ( x  -  1 ) ,  ( x  -  1 ) ,  a ) (,) if ( b  <_  ( x  + 
1 ) ,  b ,  ( x  + 
1 ) ) ) )
5756adantr 481 . . . . . . . . . . . . . . . . . 18  |-  ( ( x  e.  ( a (,) b )  /\  ( a (,) b
)  C_  ( v  i^i  ( x ( ball `  D ) 1 ) ) )  ->  (
( a (,) b
)  i^i  ( (
x  -  1 ) (,) ( x  + 
1 ) ) )  =  ( if ( a  <_  ( x  -  1 ) ,  ( x  -  1 ) ,  a ) (,) if ( b  <_  ( x  + 
1 ) ,  b ,  ( x  + 
1 ) ) ) )
5851, 57eqtrd 2656 . . . . . . . . . . . . . . . . 17  |-  ( ( x  e.  ( a (,) b )  /\  ( a (,) b
)  C_  ( v  i^i  ( x ( ball `  D ) 1 ) ) )  ->  (
a (,) b )  =  ( if ( a  <_  ( x  -  1 ) ,  ( x  -  1 ) ,  a ) (,) if ( b  <_  ( x  + 
1 ) ,  b ,  ( x  + 
1 ) ) ) )
59 mnfxr 10096 . . . . . . . . . . . . . . . . . . . 20  |- -oo  e.  RR*
6059a1i 11 . . . . . . . . . . . . . . . . . . 19  |-  ( ( x  e.  ( a (,) b )  /\  ( a (,) b
)  C_  ( v  i^i  ( x ( ball `  D ) 1 ) ) )  -> -oo  e.  RR* )
6147, 18syl 17 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( x  e.  ( a (,) b )  /\  ( a (,) b
)  C_  ( v  i^i  ( x ( ball `  D ) 1 ) ) )  ->  (
x  -  1 )  e.  RR* )
6252adantr 481 . . . . . . . . . . . . . . . . . . . . 21  |-  ( ( x  e.  ( a (,) b )  /\  ( a (,) b
)  C_  ( v  i^i  ( x ( ball `  D ) 1 ) ) )  ->  (
a  e.  RR*  /\  b  e.  RR* ) )
6362simpld 475 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( x  e.  ( a (,) b )  /\  ( a (,) b
)  C_  ( v  i^i  ( x ( ball `  D ) 1 ) ) )  ->  a  e.  RR* )
6461, 63ifcld 4131 . . . . . . . . . . . . . . . . . . 19  |-  ( ( x  e.  ( a (,) b )  /\  ( a (,) b
)  C_  ( v  i^i  ( x ( ball `  D ) 1 ) ) )  ->  if ( a  <_  (
x  -  1 ) ,  ( x  - 
1 ) ,  a )  e.  RR* )
6562simprd 479 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( x  e.  ( a (,) b )  /\  ( a (,) b
)  C_  ( v  i^i  ( x ( ball `  D ) 1 ) ) )  ->  b  e.  RR* )
6647, 19syl 17 . . . . . . . . . . . . . . . . . . . . 21  |-  ( ( x  e.  ( a (,) b )  /\  ( a (,) b
)  C_  ( v  i^i  ( x ( ball `  D ) 1 ) ) )  ->  (
x  +  1 )  e.  RR )
6766rexrd 10089 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( x  e.  ( a (,) b )  /\  ( a (,) b
)  C_  ( v  i^i  ( x ( ball `  D ) 1 ) ) )  ->  (
x  +  1 )  e.  RR* )
6865, 67ifcld 4131 . . . . . . . . . . . . . . . . . . 19  |-  ( ( x  e.  ( a (,) b )  /\  ( a (,) b
)  C_  ( v  i^i  ( x ( ball `  D ) 1 ) ) )  ->  if ( b  <_  (
x  +  1 ) ,  b ,  ( x  +  1 ) )  e.  RR* )
6946, 17syl 17 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( x  e.  ( a (,) b )  ->  (
x  -  1 )  e.  RR )
7069adantr 481 . . . . . . . . . . . . . . . . . . . . 21  |-  ( ( x  e.  ( a (,) b )  /\  ( a (,) b
)  C_  ( v  i^i  ( x ( ball `  D ) 1 ) ) )  ->  (
x  -  1 )  e.  RR )
71 mnflt 11957 . . . . . . . . . . . . . . . . . . . . 21  |-  ( ( x  -  1 )  e.  RR  -> -oo  <  ( x  -  1 ) )
7270, 71syl 17 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( x  e.  ( a (,) b )  /\  ( a (,) b
)  C_  ( v  i^i  ( x ( ball `  D ) 1 ) ) )  -> -oo  <  ( x  -  1 ) )
73 xrmax2 12007 . . . . . . . . . . . . . . . . . . . . 21  |-  ( ( a  e.  RR*  /\  (
x  -  1 )  e.  RR* )  ->  (
x  -  1 )  <_  if ( a  <_  ( x  - 
1 ) ,  ( x  -  1 ) ,  a ) )
7463, 61, 73syl2anc 693 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( x  e.  ( a (,) b )  /\  ( a (,) b
)  C_  ( v  i^i  ( x ( ball `  D ) 1 ) ) )  ->  (
x  -  1 )  <_  if ( a  <_  ( x  - 
1 ) ,  ( x  -  1 ) ,  a ) )
7560, 61, 64, 72, 74xrltletrd 11992 . . . . . . . . . . . . . . . . . . 19  |-  ( ( x  e.  ( a (,) b )  /\  ( a (,) b
)  C_  ( v  i^i  ( x ( ball `  D ) 1 ) ) )  -> -oo  <  if ( a  <_  (
x  -  1 ) ,  ( x  - 
1 ) ,  a ) )
76 simpl 473 . . . . . . . . . . . . . . . . . . . . 21  |-  ( ( x  e.  ( a (,) b )  /\  ( a (,) b
)  C_  ( v  i^i  ( x ( ball `  D ) 1 ) ) )  ->  x  e.  ( a (,) b
) )
7776, 58eleqtrd 2703 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( x  e.  ( a (,) b )  /\  ( a (,) b
)  C_  ( v  i^i  ( x ( ball `  D ) 1 ) ) )  ->  x  e.  ( if ( a  <_  ( x  - 
1 ) ,  ( x  -  1 ) ,  a ) (,)
if ( b  <_ 
( x  +  1 ) ,  b ,  ( x  +  1 ) ) ) )
78 eliooxr 12232 . . . . . . . . . . . . . . . . . . . . 21  |-  ( x  e.  ( if ( a  <_  ( x  -  1 ) ,  ( x  -  1 ) ,  a ) (,) if ( b  <_  ( x  + 
1 ) ,  b ,  ( x  + 
1 ) ) )  ->  ( if ( a  <_  ( x  -  1 ) ,  ( x  -  1 ) ,  a )  e.  RR*  /\  if ( b  <_  ( x  +  1 ) ,  b ,  ( x  +  1 ) )  e.  RR* ) )
79 ne0i 3921 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( x  e.  ( if ( a  <_  ( x  -  1 ) ,  ( x  -  1 ) ,  a ) (,) if ( b  <_  ( x  + 
1 ) ,  b ,  ( x  + 
1 ) ) )  ->  ( if ( a  <_  ( x  -  1 ) ,  ( x  -  1 ) ,  a ) (,) if ( b  <_  ( x  + 
1 ) ,  b ,  ( x  + 
1 ) ) )  =/=  (/) )
80 ioon0 12201 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( ( if ( a  <_ 
( x  -  1 ) ,  ( x  -  1 ) ,  a )  e.  RR*  /\  if ( b  <_ 
( x  +  1 ) ,  b ,  ( x  +  1 ) )  e.  RR* )  ->  ( ( if ( a  <_  (
x  -  1 ) ,  ( x  - 
1 ) ,  a ) (,) if ( b  <_  ( x  +  1 ) ,  b ,  ( x  +  1 ) ) )  =/=  (/)  <->  if (
a  <_  ( x  -  1 ) ,  ( x  -  1 ) ,  a )  <  if ( b  <_  ( x  + 
1 ) ,  b ,  ( x  + 
1 ) ) ) )
8179, 80syl5ib 234 . . . . . . . . . . . . . . . . . . . . 21  |-  ( ( if ( a  <_ 
( x  -  1 ) ,  ( x  -  1 ) ,  a )  e.  RR*  /\  if ( b  <_ 
( x  +  1 ) ,  b ,  ( x  +  1 ) )  e.  RR* )  ->  ( x  e.  ( if ( a  <_  ( x  - 
1 ) ,  ( x  -  1 ) ,  a ) (,)
if ( b  <_ 
( x  +  1 ) ,  b ,  ( x  +  1 ) ) )  ->  if ( a  <_  (
x  -  1 ) ,  ( x  - 
1 ) ,  a )  <  if ( b  <_  ( x  +  1 ) ,  b ,  ( x  +  1 ) ) ) )
8278, 81mpcom 38 . . . . . . . . . . . . . . . . . . . 20  |-  ( x  e.  ( if ( a  <_  ( x  -  1 ) ,  ( x  -  1 ) ,  a ) (,) if ( b  <_  ( x  + 
1 ) ,  b ,  ( x  + 
1 ) ) )  ->  if ( a  <_  ( x  - 
1 ) ,  ( x  -  1 ) ,  a )  < 
if ( b  <_ 
( x  +  1 ) ,  b ,  ( x  +  1 ) ) )
8377, 82syl 17 . . . . . . . . . . . . . . . . . . 19  |-  ( ( x  e.  ( a (,) b )  /\  ( a (,) b
)  C_  ( v  i^i  ( x ( ball `  D ) 1 ) ) )  ->  if ( a  <_  (
x  -  1 ) ,  ( x  - 
1 ) ,  a )  <  if ( b  <_  ( x  +  1 ) ,  b ,  ( x  +  1 ) ) )
84 xrre2 12001 . . . . . . . . . . . . . . . . . . 19  |-  ( ( ( -oo  e.  RR*  /\  if ( a  <_ 
( x  -  1 ) ,  ( x  -  1 ) ,  a )  e.  RR*  /\  if ( b  <_ 
( x  +  1 ) ,  b ,  ( x  +  1 ) )  e.  RR* )  /\  ( -oo  <  if ( a  <_  (
x  -  1 ) ,  ( x  - 
1 ) ,  a )  /\  if ( a  <_  ( x  -  1 ) ,  ( x  -  1 ) ,  a )  <  if ( b  <_  ( x  + 
1 ) ,  b ,  ( x  + 
1 ) ) ) )  ->  if (
a  <_  ( x  -  1 ) ,  ( x  -  1 ) ,  a )  e.  RR )
8560, 64, 68, 75, 83, 84syl32anc 1334 . . . . . . . . . . . . . . . . . 18  |-  ( ( x  e.  ( a (,) b )  /\  ( a (,) b
)  C_  ( v  i^i  ( x ( ball `  D ) 1 ) ) )  ->  if ( a  <_  (
x  -  1 ) ,  ( x  - 
1 ) ,  a )  e.  RR )
86 mnfle 11969 . . . . . . . . . . . . . . . . . . . . 21  |-  ( if ( a  <_  (
x  -  1 ) ,  ( x  - 
1 ) ,  a )  e.  RR*  -> -oo 
<_  if ( a  <_ 
( x  -  1 ) ,  ( x  -  1 ) ,  a ) )
8764, 86syl 17 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( x  e.  ( a (,) b )  /\  ( a (,) b
)  C_  ( v  i^i  ( x ( ball `  D ) 1 ) ) )  -> -oo  <_  if ( a  <_  (
x  -  1 ) ,  ( x  - 
1 ) ,  a ) )
8860, 64, 68, 87, 83xrlelttrd 11991 . . . . . . . . . . . . . . . . . . 19  |-  ( ( x  e.  ( a (,) b )  /\  ( a (,) b
)  C_  ( v  i^i  ( x ( ball `  D ) 1 ) ) )  -> -oo  <  if ( b  <_  (
x  +  1 ) ,  b ,  ( x  +  1 ) ) )
89 xrmin2 12009 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( b  e.  RR*  /\  (
x  +  1 )  e.  RR* )  ->  if ( b  <_  (
x  +  1 ) ,  b ,  ( x  +  1 ) )  <_  ( x  +  1 ) )
9065, 67, 89syl2anc 693 . . . . . . . . . . . . . . . . . . 19  |-  ( ( x  e.  ( a (,) b )  /\  ( a (,) b
)  C_  ( v  i^i  ( x ( ball `  D ) 1 ) ) )  ->  if ( b  <_  (
x  +  1 ) ,  b ,  ( x  +  1 ) )  <_  ( x  +  1 ) )
91 xrre 12000 . . . . . . . . . . . . . . . . . . 19  |-  ( ( ( if ( b  <_  ( x  + 
1 ) ,  b ,  ( x  + 
1 ) )  e. 
RR*  /\  ( x  +  1 )  e.  RR )  /\  ( -oo  <  if ( b  <_  ( x  + 
1 ) ,  b ,  ( x  + 
1 ) )  /\  if ( b  <_  (
x  +  1 ) ,  b ,  ( x  +  1 ) )  <_  ( x  +  1 ) ) )  ->  if (
b  <_  ( x  +  1 ) ,  b ,  ( x  +  1 ) )  e.  RR )
9268, 66, 88, 90, 91syl22anc 1327 . . . . . . . . . . . . . . . . . 18  |-  ( ( x  e.  ( a (,) b )  /\  ( a (,) b
)  C_  ( v  i^i  ( x ( ball `  D ) 1 ) ) )  ->  if ( b  <_  (
x  +  1 ) ,  b ,  ( x  +  1 ) )  e.  RR )
931ioo2blex 22597 . . . . . . . . . . . . . . . . . 18  |-  ( ( if ( a  <_ 
( x  -  1 ) ,  ( x  -  1 ) ,  a )  e.  RR  /\  if ( b  <_ 
( x  +  1 ) ,  b ,  ( x  +  1 ) )  e.  RR )  ->  ( if ( a  <_  ( x  -  1 ) ,  ( x  -  1 ) ,  a ) (,) if ( b  <_  ( x  + 
1 ) ,  b ,  ( x  + 
1 ) ) )  e.  ran  ( ball `  D ) )
9485, 92, 93syl2anc 693 . . . . . . . . . . . . . . . . 17  |-  ( ( x  e.  ( a (,) b )  /\  ( a (,) b
)  C_  ( v  i^i  ( x ( ball `  D ) 1 ) ) )  ->  ( if ( a  <_  (
x  -  1 ) ,  ( x  - 
1 ) ,  a ) (,) if ( b  <_  ( x  +  1 ) ,  b ,  ( x  +  1 ) ) )  e.  ran  ( ball `  D ) )
9558, 94eqeltrd 2701 . . . . . . . . . . . . . . . 16  |-  ( ( x  e.  ( a (,) b )  /\  ( a (,) b
)  C_  ( v  i^i  ( x ( ball `  D ) 1 ) ) )  ->  (
a (,) b )  e.  ran  ( ball `  D ) )
96 inss1 3833 . . . . . . . . . . . . . . . . . 18  |-  ( v  i^i  ( x (
ball `  D )
1 ) )  C_  v
97 sstr 3611 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( a (,) b
)  C_  ( v  i^i  ( x ( ball `  D ) 1 ) )  /\  ( v  i^i  ( x (
ball `  D )
1 ) )  C_  v )  ->  (
a (,) b ) 
C_  v )
9896, 97mpan2 707 . . . . . . . . . . . . . . . . 17  |-  ( ( a (,) b ) 
C_  ( v  i^i  ( x ( ball `  D ) 1 ) )  ->  ( a (,) b )  C_  v
)
9998adantl 482 . . . . . . . . . . . . . . . 16  |-  ( ( x  e.  ( a (,) b )  /\  ( a (,) b
)  C_  ( v  i^i  ( x ( ball `  D ) 1 ) ) )  ->  (
a (,) b ) 
C_  v )
100 sseq1 3626 . . . . . . . . . . . . . . . . . 18  |-  ( z  =  ( a (,) b )  ->  (
z  C_  v  <->  ( a (,) b )  C_  v
) )
10139, 100anbi12d 747 . . . . . . . . . . . . . . . . 17  |-  ( z  =  ( a (,) b )  ->  (
( x  e.  z  /\  z  C_  v
)  <->  ( x  e.  ( a (,) b
)  /\  ( a (,) b )  C_  v
) ) )
102101rspcev 3309 . . . . . . . . . . . . . . . 16  |-  ( ( ( a (,) b
)  e.  ran  ( ball `  D )  /\  ( x  e.  (
a (,) b )  /\  ( a (,) b )  C_  v
) )  ->  E. z  e.  ran  ( ball `  D
) ( x  e.  z  /\  z  C_  v ) )
10395, 76, 99, 102syl12anc 1324 . . . . . . . . . . . . . . 15  |-  ( ( x  e.  ( a (,) b )  /\  ( a (,) b
)  C_  ( v  i^i  ( x ( ball `  D ) 1 ) ) )  ->  E. z  e.  ran  ( ball `  D
) ( x  e.  z  /\  z  C_  v ) )
104 blssex 22232 . . . . . . . . . . . . . . . 16  |-  ( ( D  e.  ( *Met `  RR )  /\  x  e.  RR )  ->  ( E. z  e.  ran  ( ball `  D
) ( x  e.  z  /\  z  C_  v )  <->  E. y  e.  RR+  ( x (
ball `  D )
y )  C_  v
) )
1052, 47, 104sylancr 695 . . . . . . . . . . . . . . 15  |-  ( ( x  e.  ( a (,) b )  /\  ( a (,) b
)  C_  ( v  i^i  ( x ( ball `  D ) 1 ) ) )  ->  ( E. z  e.  ran  ( ball `  D )
( x  e.  z  /\  z  C_  v
)  <->  E. y  e.  RR+  ( x ( ball `  D ) y ) 
C_  v ) )
106103, 105mpbid 222 . . . . . . . . . . . . . 14  |-  ( ( x  e.  ( a (,) b )  /\  ( a (,) b
)  C_  ( v  i^i  ( x ( ball `  D ) 1 ) ) )  ->  E. y  e.  RR+  ( x (
ball `  D )
y )  C_  v
)
10741, 106syl6bi 243 . . . . . . . . . . . . 13  |-  ( z  =  ( a (,) b )  ->  (
( x  e.  z  /\  z  C_  (
v  i^i  ( x
( ball `  D )
1 ) ) )  ->  E. y  e.  RR+  ( x ( ball `  D ) y ) 
C_  v ) )
108107a1i 11 . . . . . . . . . . . 12  |-  ( ( a  e.  RR*  /\  b  e.  RR* )  ->  (
z  =  ( a (,) b )  -> 
( ( x  e.  z  /\  z  C_  ( v  i^i  (
x ( ball `  D
) 1 ) ) )  ->  E. y  e.  RR+  ( x (
ball `  D )
y )  C_  v
) ) )
109108rexlimivv 3036 . . . . . . . . . . 11  |-  ( E. a  e.  RR*  E. b  e.  RR*  z  =  ( a (,) b )  ->  ( ( x  e.  z  /\  z  C_  ( v  i^i  (
x ( ball `  D
) 1 ) ) )  ->  E. y  e.  RR+  ( x (
ball `  D )
y )  C_  v
) )
110109imp 445 . . . . . . . . . 10  |-  ( ( E. a  e.  RR*  E. b  e.  RR*  z  =  ( a (,) b )  /\  (
x  e.  z  /\  z  C_  ( v  i^i  ( x ( ball `  D ) 1 ) ) ) )  ->  E. y  e.  RR+  (
x ( ball `  D
) y )  C_  v )
11138, 110sylanb 489 . . . . . . . . 9  |-  ( ( z  e.  ran  (,)  /\  ( x  e.  z  /\  z  C_  (
v  i^i  ( x
( ball `  D )
1 ) ) ) )  ->  E. y  e.  RR+  ( x (
ball `  D )
y )  C_  v
)
112111rexlimiva 3028 . . . . . . . 8  |-  ( E. z  e.  ran  (,) ( x  e.  z  /\  z  C_  ( v  i^i  ( x (
ball `  D )
1 ) ) )  ->  E. y  e.  RR+  ( x ( ball `  D ) y ) 
C_  v )
11336, 112syl 17 . . . . . . 7  |-  ( ( v  e.  ran  (,)  /\  x  e.  v )  ->  E. y  e.  RR+  ( x ( ball `  D ) y ) 
C_  v )
114113ralrimiva 2966 . . . . . 6  |-  ( v  e.  ran  (,)  ->  A. x  e.  v  E. y  e.  RR+  ( x ( ball `  D
) y )  C_  v )
1153elmopn2 22250 . . . . . . 7  |-  ( D  e.  ( *Met `  RR )  ->  (
v  e.  J  <->  ( v  C_  RR  /\  A. x  e.  v  E. y  e.  RR+  ( x (
ball `  D )
y )  C_  v
) ) )
1162, 115ax-mp 5 . . . . . 6  |-  ( v  e.  J  <->  ( v  C_  RR  /\  A. x  e.  v  E. y  e.  RR+  ( x (
ball `  D )
y )  C_  v
) )
1179, 114, 116sylanbrc 698 . . . . 5  |-  ( v  e.  ran  (,)  ->  v  e.  J )
118117ssriv 3607 . . . 4  |-  ran  (,)  C_  J
119118, 5sseqtri 3637 . . 3  |-  ran  (,)  C_  ( topGen `  ran  ( ball `  D ) )
120 2basgen 20794 . . 3  |-  ( ( ran  ( ball `  D
)  C_  ran  (,)  /\  ran  (,)  C_  ( topGen ` 
ran  ( ball `  D
) ) )  -> 
( topGen `  ran  ( ball `  D ) )  =  ( topGen `  ran  (,) )
)
1216, 119, 120mp2an 708 . 2  |-  ( topGen ` 
ran  ( ball `  D
) )  =  (
topGen `  ran  (,) )
1225, 121eqtr2i 2645 1  |-  ( topGen ` 
ran  (,) )  =  J
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 196    /\ wa 384    = wceq 1483    e. wcel 1990    =/= wne 2794   A.wral 2912   E.wrex 2913    i^i cin 3573    C_ wss 3574   (/)c0 3915   ifcif 4086   ~Pcpw 4158   U.cuni 4436   class class class wbr 4653    X. cxp 5112   ran crn 5115    |` cres 5116    o. ccom 5118    Fn wfn 5883   -->wf 5884   ` cfv 5888  (class class class)co 6650   RRcr 9935   1c1 9937    + caddc 9939   -oocmnf 10072   RR*cxr 10073    < clt 10074    <_ cle 10075    - cmin 10266   RR+crp 11832   (,)cioo 12175   abscabs 13974   topGenctg 16098   *Metcxmt 19731   ballcbl 19733   MetOpencmopn 19736   TopBasesctb 20749
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-cnex 9992  ax-resscn 9993  ax-1cn 9994  ax-icn 9995  ax-addcl 9996  ax-addrcl 9997  ax-mulcl 9998  ax-mulrcl 9999  ax-mulcom 10000  ax-addass 10001  ax-mulass 10002  ax-distr 10003  ax-i2m1 10004  ax-1ne0 10005  ax-1rid 10006  ax-rnegex 10007  ax-rrecex 10008  ax-cnre 10009  ax-pre-lttri 10010  ax-pre-lttrn 10011  ax-pre-ltadd 10012  ax-pre-mulgt0 10013  ax-pre-sup 10014
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-nel 2898  df-ral 2917  df-rex 2918  df-reu 2919  df-rmo 2920  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-pred 5680  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-riota 6611  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-om 7066  df-1st 7168  df-2nd 7169  df-wrecs 7407  df-recs 7468  df-rdg 7506  df-er 7742  df-map 7859  df-en 7956  df-dom 7957  df-sdom 7958  df-sup 8348  df-inf 8349  df-pnf 10076  df-mnf 10077  df-xr 10078  df-ltxr 10079  df-le 10080  df-sub 10268  df-neg 10269  df-div 10685  df-nn 11021  df-2 11079  df-3 11080  df-n0 11293  df-z 11378  df-uz 11688  df-q 11789  df-rp 11833  df-xneg 11946  df-xadd 11947  df-xmul 11948  df-ioo 12179  df-seq 12802  df-exp 12861  df-cj 13839  df-re 13840  df-im 13841  df-sqrt 13975  df-abs 13976  df-topgen 16104  df-psmet 19738  df-xmet 19739  df-met 19740  df-bl 19741  df-mopn 19742  df-bases 20750
This theorem is referenced by:  qdensere2  22600  rehaus  22602  resubmet  22605  tgioo2  22606  xrsmopn  22615  iccntr  22624  icccmplem3  22627  reconnlem2  22630  opnreen  22634  metdscn2  22660  evthicc  23228  opnmbllem  23369  dvlip2  23758  lhop  23779  dvcnvre  23782  nmcvcn  27550  opnrebl  32315  opnrebl2  32316  ptrecube  33409  poimirlem30  33439  opnmbllem0  33445  reheibor  33638
  Copyright terms: Public domain W3C validator