| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > restbas | Structured version Visualization version Unicode version | ||
| Description: A subspace topology basis
is a basis. |
| Ref | Expression |
|---|---|
| restbas |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | elrest 16088 |
. . . . . . 7
| |
| 2 | elrest 16088 |
. . . . . . 7
| |
| 3 | 1, 2 | anbi12d 747 |
. . . . . 6
|
| 4 | reeanv 3107 |
. . . . . 6
| |
| 5 | 3, 4 | syl6bbr 278 |
. . . . 5
|
| 6 | simplll 798 |
. . . . . . . . . 10
| |
| 7 | simplrl 800 |
. . . . . . . . . 10
| |
| 8 | simplrr 801 |
. . . . . . . . . 10
| |
| 9 | inss1 3833 |
. . . . . . . . . . 11
| |
| 10 | simpr 477 |
. . . . . . . . . . 11
| |
| 11 | 9, 10 | sseldi 3601 |
. . . . . . . . . 10
|
| 12 | basis2 20755 |
. . . . . . . . . 10
| |
| 13 | 6, 7, 8, 11, 12 | syl22anc 1327 |
. . . . . . . . 9
|
| 14 | simplll 798 |
. . . . . . . . . . . 12
| |
| 15 | 14 | simpld 475 |
. . . . . . . . . . 11
|
| 16 | 14 | simprd 479 |
. . . . . . . . . . 11
|
| 17 | simprl 794 |
. . . . . . . . . . 11
| |
| 18 | elrestr 16089 |
. . . . . . . . . . 11
| |
| 19 | 15, 16, 17, 18 | syl3anc 1326 |
. . . . . . . . . 10
|
| 20 | simprrl 804 |
. . . . . . . . . . 11
| |
| 21 | inss2 3834 |
. . . . . . . . . . . 12
| |
| 22 | simplr 792 |
. . . . . . . . . . . 12
| |
| 23 | 21, 22 | sseldi 3601 |
. . . . . . . . . . 11
|
| 24 | 20, 23 | elind 3798 |
. . . . . . . . . 10
|
| 25 | simprrr 805 |
. . . . . . . . . . 11
| |
| 26 | ssrin 3838 |
. . . . . . . . . . 11
| |
| 27 | 25, 26 | syl 17 |
. . . . . . . . . 10
|
| 28 | eleq2 2690 |
. . . . . . . . . . . 12
| |
| 29 | sseq1 3626 |
. . . . . . . . . . . 12
| |
| 30 | 28, 29 | anbi12d 747 |
. . . . . . . . . . 11
|
| 31 | 30 | rspcev 3309 |
. . . . . . . . . 10
|
| 32 | 19, 24, 27, 31 | syl12anc 1324 |
. . . . . . . . 9
|
| 33 | 13, 32 | rexlimddv 3035 |
. . . . . . . 8
|
| 34 | 33 | ralrimiva 2966 |
. . . . . . 7
|
| 35 | ineq12 3809 |
. . . . . . . . 9
| |
| 36 | inindir 3831 |
. . . . . . . . 9
| |
| 37 | 35, 36 | syl6eqr 2674 |
. . . . . . . 8
|
| 38 | 37 | sseq2d 3633 |
. . . . . . . . . 10
|
| 39 | 38 | anbi2d 740 |
. . . . . . . . 9
|
| 40 | 39 | rexbidv 3052 |
. . . . . . . 8
|
| 41 | 37, 40 | raleqbidv 3152 |
. . . . . . 7
|
| 42 | 34, 41 | syl5ibrcom 237 |
. . . . . 6
|
| 43 | 42 | rexlimdvva 3038 |
. . . . 5
|
| 44 | 5, 43 | sylbid 230 |
. . . 4
|
| 45 | 44 | ralrimivv 2970 |
. . 3
|
| 46 | ovex 6678 |
. . . 4
| |
| 47 | isbasis2g 20752 |
. . . 4
| |
| 48 | 46, 47 | ax-mp 5 |
. . 3
|
| 49 | 45, 48 | sylibr 224 |
. 2
|
| 50 | relxp 5227 |
. . . . . 6
| |
| 51 | restfn 16085 |
. . . . . . . 8
| |
| 52 | fndm 5990 |
. . . . . . . 8
| |
| 53 | 51, 52 | ax-mp 5 |
. . . . . . 7
|
| 54 | 53 | releqi 5202 |
. . . . . 6
|
| 55 | 50, 54 | mpbir 221 |
. . . . 5
|
| 56 | 55 | ovprc2 6685 |
. . . 4
|
| 57 | 56 | adantl 482 |
. . 3
|
| 58 | fi0 8326 |
. . . 4
| |
| 59 | fibas 20781 |
. . . 4
| |
| 60 | 58, 59 | eqeltrri 2698 |
. . 3
|
| 61 | 57, 60 | syl6eqel 2709 |
. 2
|
| 62 | 49, 61 | pm2.61dan 832 |
1
|
| Colors of variables: wff setvar class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1722 ax-4 1737 ax-5 1839 ax-6 1888 ax-7 1935 ax-8 1992 ax-9 1999 ax-10 2019 ax-11 2034 ax-12 2047 ax-13 2246 ax-ext 2602 ax-rep 4771 ax-sep 4781 ax-nul 4789 ax-pow 4843 ax-pr 4906 ax-un 6949 |
| This theorem depends on definitions: df-bi 197 df-or 385 df-an 386 df-3or 1038 df-3an 1039 df-tru 1486 df-ex 1705 df-nf 1710 df-sb 1881 df-eu 2474 df-mo 2475 df-clab 2609 df-cleq 2615 df-clel 2618 df-nfc 2753 df-ne 2795 df-ral 2917 df-rex 2918 df-reu 2919 df-rab 2921 df-v 3202 df-sbc 3436 df-csb 3534 df-dif 3577 df-un 3579 df-in 3581 df-ss 3588 df-pss 3590 df-nul 3916 df-if 4087 df-pw 4160 df-sn 4178 df-pr 4180 df-tp 4182 df-op 4184 df-uni 4437 df-int 4476 df-iun 4522 df-br 4654 df-opab 4713 df-mpt 4730 df-tr 4753 df-id 5024 df-eprel 5029 df-po 5035 df-so 5036 df-fr 5073 df-we 5075 df-xp 5120 df-rel 5121 df-cnv 5122 df-co 5123 df-dm 5124 df-rn 5125 df-res 5126 df-ima 5127 df-pred 5680 df-ord 5726 df-on 5727 df-lim 5728 df-suc 5729 df-iota 5851 df-fun 5890 df-fn 5891 df-f 5892 df-f1 5893 df-fo 5894 df-f1o 5895 df-fv 5896 df-ov 6653 df-oprab 6654 df-mpt2 6655 df-om 7066 df-1st 7168 df-2nd 7169 df-wrecs 7407 df-recs 7468 df-rdg 7506 df-oadd 7564 df-er 7742 df-en 7956 df-fin 7959 df-fi 8317 df-rest 16083 df-bases 20750 |
| This theorem is referenced by: resttop 20964 2ndcrest 21257 |
| Copyright terms: Public domain | W3C validator |