MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  brelrng Structured version   Visualization version   Unicode version

Theorem brelrng 5355
Description: The second argument of a binary relation belongs to its range. (Contributed by NM, 29-Jun-2008.)
Assertion
Ref Expression
brelrng  |-  ( ( A  e.  F  /\  B  e.  G  /\  A C B )  ->  B  e.  ran  C )

Proof of Theorem brelrng
StepHypRef Expression
1 brcnvg 5303 . . . . 5  |-  ( ( B  e.  G  /\  A  e.  F )  ->  ( B `' C A 
<->  A C B ) )
21ancoms 469 . . . 4  |-  ( ( A  e.  F  /\  B  e.  G )  ->  ( B `' C A 
<->  A C B ) )
32biimp3ar 1433 . . 3  |-  ( ( A  e.  F  /\  B  e.  G  /\  A C B )  ->  B `' C A )
4 breldmg 5330 . . . 4  |-  ( ( B  e.  G  /\  A  e.  F  /\  B `' C A )  ->  B  e.  dom  `' C
)
543com12 1269 . . 3  |-  ( ( A  e.  F  /\  B  e.  G  /\  B `' C A )  ->  B  e.  dom  `' C
)
63, 5syld3an3 1371 . 2  |-  ( ( A  e.  F  /\  B  e.  G  /\  A C B )  ->  B  e.  dom  `' C
)
7 df-rn 5125 . 2  |-  ran  C  =  dom  `' C
86, 7syl6eleqr 2712 1  |-  ( ( A  e.  F  /\  B  e.  G  /\  A C B )  ->  B  e.  ran  C )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 196    /\ w3a 1037    e. wcel 1990   class class class wbr 4653   `'ccnv 5113   dom cdm 5114   ran crn 5115
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-sep 4781  ax-nul 4789  ax-pr 4906
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-rab 2921  df-v 3202  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-nul 3916  df-if 4087  df-sn 4178  df-pr 4180  df-op 4184  df-br 4654  df-opab 4713  df-cnv 5122  df-dm 5124  df-rn 5125
This theorem is referenced by:  brelrn  5356  relelrn  5359  sossfld  5580  fvrn0  6216  pgpfaclem1  18480  perpln2  25606
  Copyright terms: Public domain W3C validator