| Mathbox for Jeff Madsen |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > exidreslem | Structured version Visualization version Unicode version | ||
| Description: Lemma for exidres 33677 and exidresid 33678. (Contributed by Jeff Madsen, 8-Jun-2010.) (Revised by Mario Carneiro, 23-Dec-2013.) |
| Ref | Expression |
|---|---|
| exidres.1 |
|
| exidres.2 |
|
| exidres.3 |
|
| Ref | Expression |
|---|---|
| exidreslem |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | exidres.3 |
. . . . . . . 8
| |
| 2 | 1 | dmeqi 5325 |
. . . . . . 7
|
| 3 | xpss12 5225 |
. . . . . . . . . . 11
| |
| 4 | 3 | anidms 677 |
. . . . . . . . . 10
|
| 5 | exidres.1 |
. . . . . . . . . . . . 13
| |
| 6 | 5 | opidon2OLD 33653 |
. . . . . . . . . . . 12
|
| 7 | fof 6115 |
. . . . . . . . . . . 12
| |
| 8 | fdm 6051 |
. . . . . . . . . . . 12
| |
| 9 | 6, 7, 8 | 3syl 18 |
. . . . . . . . . . 11
|
| 10 | 9 | sseq2d 3633 |
. . . . . . . . . 10
|
| 11 | 4, 10 | syl5ibr 236 |
. . . . . . . . 9
|
| 12 | 11 | imp 445 |
. . . . . . . 8
|
| 13 | ssdmres 5420 |
. . . . . . . 8
| |
| 14 | 12, 13 | sylib 208 |
. . . . . . 7
|
| 15 | 2, 14 | syl5eq 2668 |
. . . . . 6
|
| 16 | 15 | dmeqd 5326 |
. . . . 5
|
| 17 | dmxpid 5345 |
. . . . 5
| |
| 18 | 16, 17 | syl6eq 2672 |
. . . 4
|
| 19 | 18 | eleq2d 2687 |
. . 3
|
| 20 | 19 | biimp3ar 1433 |
. 2
|
| 21 | ssel2 3598 |
. . . . . . . . . 10
| |
| 22 | exidres.2 |
. . . . . . . . . . 11
| |
| 23 | 5, 22 | cmpidelt 33658 |
. . . . . . . . . 10
|
| 24 | 21, 23 | sylan2 491 |
. . . . . . . . 9
|
| 25 | 24 | anassrs 680 |
. . . . . . . 8
|
| 26 | 25 | adantrl 752 |
. . . . . . 7
|
| 27 | 1 | oveqi 6663 |
. . . . . . . . . . 11
|
| 28 | ovres 6800 |
. . . . . . . . . . 11
| |
| 29 | 27, 28 | syl5eq 2668 |
. . . . . . . . . 10
|
| 30 | 29 | eqeq1d 2624 |
. . . . . . . . 9
|
| 31 | 1 | oveqi 6663 |
. . . . . . . . . . . 12
|
| 32 | ovres 6800 |
. . . . . . . . . . . 12
| |
| 33 | 31, 32 | syl5eq 2668 |
. . . . . . . . . . 11
|
| 34 | 33 | ancoms 469 |
. . . . . . . . . 10
|
| 35 | 34 | eqeq1d 2624 |
. . . . . . . . 9
|
| 36 | 30, 35 | anbi12d 747 |
. . . . . . . 8
|
| 37 | 36 | adantl 482 |
. . . . . . 7
|
| 38 | 26, 37 | mpbird 247 |
. . . . . 6
|
| 39 | 38 | anassrs 680 |
. . . . 5
|
| 40 | 39 | ralrimiva 2966 |
. . . 4
|
| 41 | 40 | 3impa 1259 |
. . 3
|
| 42 | 12 | 3adant3 1081 |
. . . . . . . 8
|
| 43 | 42, 13 | sylib 208 |
. . . . . . 7
|
| 44 | 2, 43 | syl5eq 2668 |
. . . . . 6
|
| 45 | 44 | dmeqd 5326 |
. . . . 5
|
| 46 | 45, 17 | syl6eq 2672 |
. . . 4
|
| 47 | 46 | raleqdv 3144 |
. . 3
|
| 48 | 41, 47 | mpbird 247 |
. 2
|
| 49 | 20, 48 | jca 554 |
1
|
| Colors of variables: wff setvar class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1722 ax-4 1737 ax-5 1839 ax-6 1888 ax-7 1935 ax-8 1992 ax-9 1999 ax-10 2019 ax-11 2034 ax-12 2047 ax-13 2246 ax-ext 2602 ax-sep 4781 ax-nul 4789 ax-pr 4906 ax-un 6949 |
| This theorem depends on definitions: df-bi 197 df-or 385 df-an 386 df-3an 1039 df-tru 1486 df-ex 1705 df-nf 1710 df-sb 1881 df-eu 2474 df-mo 2475 df-clab 2609 df-cleq 2615 df-clel 2618 df-nfc 2753 df-ne 2795 df-ral 2917 df-rex 2918 df-reu 2919 df-rmo 2920 df-rab 2921 df-v 3202 df-sbc 3436 df-csb 3534 df-dif 3577 df-un 3579 df-in 3581 df-ss 3588 df-nul 3916 df-if 4087 df-sn 4178 df-pr 4180 df-op 4184 df-uni 4437 df-iun 4522 df-br 4654 df-opab 4713 df-mpt 4730 df-id 5024 df-xp 5120 df-rel 5121 df-cnv 5122 df-co 5123 df-dm 5124 df-rn 5125 df-res 5126 df-iota 5851 df-fun 5890 df-fn 5891 df-f 5892 df-fo 5894 df-fv 5896 df-riota 6611 df-ov 6653 df-gid 27348 df-exid 33644 df-mgmOLD 33648 |
| This theorem is referenced by: exidres 33677 exidresid 33678 |
| Copyright terms: Public domain | W3C validator |