Users' Mathboxes Mathbox for Jeff Madsen < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  exidreslem Structured version   Visualization version   Unicode version

Theorem exidreslem 33676
Description: Lemma for exidres 33677 and exidresid 33678. (Contributed by Jeff Madsen, 8-Jun-2010.) (Revised by Mario Carneiro, 23-Dec-2013.)
Hypotheses
Ref Expression
exidres.1  |-  X  =  ran  G
exidres.2  |-  U  =  (GId `  G )
exidres.3  |-  H  =  ( G  |`  ( Y  X.  Y ) )
Assertion
Ref Expression
exidreslem  |-  ( ( G  e.  ( Magma  i^i 
ExId  )  /\  Y  C_  X  /\  U  e.  Y
)  ->  ( U  e.  dom  dom  H  /\  A. x  e.  dom  dom  H ( ( U H x )  =  x  /\  ( x H U )  =  x ) ) )
Distinct variable groups:    x, G    x, Y    x, X    x, U    x, H

Proof of Theorem exidreslem
StepHypRef Expression
1 exidres.3 . . . . . . . 8  |-  H  =  ( G  |`  ( Y  X.  Y ) )
21dmeqi 5325 . . . . . . 7  |-  dom  H  =  dom  ( G  |`  ( Y  X.  Y
) )
3 xpss12 5225 . . . . . . . . . . 11  |-  ( ( Y  C_  X  /\  Y  C_  X )  -> 
( Y  X.  Y
)  C_  ( X  X.  X ) )
43anidms 677 . . . . . . . . . 10  |-  ( Y 
C_  X  ->  ( Y  X.  Y )  C_  ( X  X.  X
) )
5 exidres.1 . . . . . . . . . . . . 13  |-  X  =  ran  G
65opidon2OLD 33653 . . . . . . . . . . . 12  |-  ( G  e.  ( Magma  i^i  ExId  )  ->  G : ( X  X.  X )
-onto-> X )
7 fof 6115 . . . . . . . . . . . 12  |-  ( G : ( X  X.  X ) -onto-> X  ->  G : ( X  X.  X ) --> X )
8 fdm 6051 . . . . . . . . . . . 12  |-  ( G : ( X  X.  X ) --> X  ->  dom  G  =  ( X  X.  X ) )
96, 7, 83syl 18 . . . . . . . . . . 11  |-  ( G  e.  ( Magma  i^i  ExId  )  ->  dom  G  =  ( X  X.  X
) )
109sseq2d 3633 . . . . . . . . . 10  |-  ( G  e.  ( Magma  i^i  ExId  )  ->  ( ( Y  X.  Y )  C_  dom  G  <->  ( Y  X.  Y )  C_  ( X  X.  X ) ) )
114, 10syl5ibr 236 . . . . . . . . 9  |-  ( G  e.  ( Magma  i^i  ExId  )  ->  ( Y  C_  X  ->  ( Y  X.  Y )  C_  dom  G ) )
1211imp 445 . . . . . . . 8  |-  ( ( G  e.  ( Magma  i^i 
ExId  )  /\  Y  C_  X )  ->  ( Y  X.  Y )  C_  dom  G )
13 ssdmres 5420 . . . . . . . 8  |-  ( ( Y  X.  Y ) 
C_  dom  G  <->  dom  ( G  |`  ( Y  X.  Y
) )  =  ( Y  X.  Y ) )
1412, 13sylib 208 . . . . . . 7  |-  ( ( G  e.  ( Magma  i^i 
ExId  )  /\  Y  C_  X )  ->  dom  ( G  |`  ( Y  X.  Y ) )  =  ( Y  X.  Y ) )
152, 14syl5eq 2668 . . . . . 6  |-  ( ( G  e.  ( Magma  i^i 
ExId  )  /\  Y  C_  X )  ->  dom  H  =  ( Y  X.  Y ) )
1615dmeqd 5326 . . . . 5  |-  ( ( G  e.  ( Magma  i^i 
ExId  )  /\  Y  C_  X )  ->  dom  dom 
H  =  dom  ( Y  X.  Y ) )
17 dmxpid 5345 . . . . 5  |-  dom  ( Y  X.  Y )  =  Y
1816, 17syl6eq 2672 . . . 4  |-  ( ( G  e.  ( Magma  i^i 
ExId  )  /\  Y  C_  X )  ->  dom  dom 
H  =  Y )
1918eleq2d 2687 . . 3  |-  ( ( G  e.  ( Magma  i^i 
ExId  )  /\  Y  C_  X )  ->  ( U  e.  dom  dom  H  <->  U  e.  Y ) )
2019biimp3ar 1433 . 2  |-  ( ( G  e.  ( Magma  i^i 
ExId  )  /\  Y  C_  X  /\  U  e.  Y
)  ->  U  e.  dom  dom  H )
21 ssel2 3598 . . . . . . . . . 10  |-  ( ( Y  C_  X  /\  x  e.  Y )  ->  x  e.  X )
22 exidres.2 . . . . . . . . . . 11  |-  U  =  (GId `  G )
235, 22cmpidelt 33658 . . . . . . . . . 10  |-  ( ( G  e.  ( Magma  i^i 
ExId  )  /\  x  e.  X )  ->  (
( U G x )  =  x  /\  ( x G U )  =  x ) )
2421, 23sylan2 491 . . . . . . . . 9  |-  ( ( G  e.  ( Magma  i^i 
ExId  )  /\  ( Y  C_  X  /\  x  e.  Y ) )  -> 
( ( U G x )  =  x  /\  ( x G U )  =  x ) )
2524anassrs 680 . . . . . . . 8  |-  ( ( ( G  e.  (
Magma  i^i  ExId  )  /\  Y  C_  X )  /\  x  e.  Y )  ->  ( ( U G x )  =  x  /\  ( x G U )  =  x ) )
2625adantrl 752 . . . . . . 7  |-  ( ( ( G  e.  (
Magma  i^i  ExId  )  /\  Y  C_  X )  /\  ( U  e.  Y  /\  x  e.  Y
) )  ->  (
( U G x )  =  x  /\  ( x G U )  =  x ) )
271oveqi 6663 . . . . . . . . . . 11  |-  ( U H x )  =  ( U ( G  |`  ( Y  X.  Y
) ) x )
28 ovres 6800 . . . . . . . . . . 11  |-  ( ( U  e.  Y  /\  x  e.  Y )  ->  ( U ( G  |`  ( Y  X.  Y
) ) x )  =  ( U G x ) )
2927, 28syl5eq 2668 . . . . . . . . . 10  |-  ( ( U  e.  Y  /\  x  e.  Y )  ->  ( U H x )  =  ( U G x ) )
3029eqeq1d 2624 . . . . . . . . 9  |-  ( ( U  e.  Y  /\  x  e.  Y )  ->  ( ( U H x )  =  x  <-> 
( U G x )  =  x ) )
311oveqi 6663 . . . . . . . . . . . 12  |-  ( x H U )  =  ( x ( G  |`  ( Y  X.  Y
) ) U )
32 ovres 6800 . . . . . . . . . . . 12  |-  ( ( x  e.  Y  /\  U  e.  Y )  ->  ( x ( G  |`  ( Y  X.  Y
) ) U )  =  ( x G U ) )
3331, 32syl5eq 2668 . . . . . . . . . . 11  |-  ( ( x  e.  Y  /\  U  e.  Y )  ->  ( x H U )  =  ( x G U ) )
3433ancoms 469 . . . . . . . . . 10  |-  ( ( U  e.  Y  /\  x  e.  Y )  ->  ( x H U )  =  ( x G U ) )
3534eqeq1d 2624 . . . . . . . . 9  |-  ( ( U  e.  Y  /\  x  e.  Y )  ->  ( ( x H U )  =  x  <-> 
( x G U )  =  x ) )
3630, 35anbi12d 747 . . . . . . . 8  |-  ( ( U  e.  Y  /\  x  e.  Y )  ->  ( ( ( U H x )  =  x  /\  ( x H U )  =  x )  <->  ( ( U G x )  =  x  /\  ( x G U )  =  x ) ) )
3736adantl 482 . . . . . . 7  |-  ( ( ( G  e.  (
Magma  i^i  ExId  )  /\  Y  C_  X )  /\  ( U  e.  Y  /\  x  e.  Y
) )  ->  (
( ( U H x )  =  x  /\  ( x H U )  =  x )  <->  ( ( U G x )  =  x  /\  ( x G U )  =  x ) ) )
3826, 37mpbird 247 . . . . . 6  |-  ( ( ( G  e.  (
Magma  i^i  ExId  )  /\  Y  C_  X )  /\  ( U  e.  Y  /\  x  e.  Y
) )  ->  (
( U H x )  =  x  /\  ( x H U )  =  x ) )
3938anassrs 680 . . . . 5  |-  ( ( ( ( G  e.  ( Magma  i^i  ExId  )  /\  Y  C_  X )  /\  U  e.  Y
)  /\  x  e.  Y )  ->  (
( U H x )  =  x  /\  ( x H U )  =  x ) )
4039ralrimiva 2966 . . . 4  |-  ( ( ( G  e.  (
Magma  i^i  ExId  )  /\  Y  C_  X )  /\  U  e.  Y )  ->  A. x  e.  Y  ( ( U H x )  =  x  /\  ( x H U )  =  x ) )
41403impa 1259 . . 3  |-  ( ( G  e.  ( Magma  i^i 
ExId  )  /\  Y  C_  X  /\  U  e.  Y
)  ->  A. x  e.  Y  ( ( U H x )  =  x  /\  ( x H U )  =  x ) )
42123adant3 1081 . . . . . . . 8  |-  ( ( G  e.  ( Magma  i^i 
ExId  )  /\  Y  C_  X  /\  U  e.  Y
)  ->  ( Y  X.  Y )  C_  dom  G )
4342, 13sylib 208 . . . . . . 7  |-  ( ( G  e.  ( Magma  i^i 
ExId  )  /\  Y  C_  X  /\  U  e.  Y
)  ->  dom  ( G  |`  ( Y  X.  Y
) )  =  ( Y  X.  Y ) )
442, 43syl5eq 2668 . . . . . 6  |-  ( ( G  e.  ( Magma  i^i 
ExId  )  /\  Y  C_  X  /\  U  e.  Y
)  ->  dom  H  =  ( Y  X.  Y
) )
4544dmeqd 5326 . . . . 5  |-  ( ( G  e.  ( Magma  i^i 
ExId  )  /\  Y  C_  X  /\  U  e.  Y
)  ->  dom  dom  H  =  dom  ( Y  X.  Y ) )
4645, 17syl6eq 2672 . . . 4  |-  ( ( G  e.  ( Magma  i^i 
ExId  )  /\  Y  C_  X  /\  U  e.  Y
)  ->  dom  dom  H  =  Y )
4746raleqdv 3144 . . 3  |-  ( ( G  e.  ( Magma  i^i 
ExId  )  /\  Y  C_  X  /\  U  e.  Y
)  ->  ( A. x  e.  dom  dom  H
( ( U H x )  =  x  /\  ( x H U )  =  x )  <->  A. x  e.  Y  ( ( U H x )  =  x  /\  ( x H U )  =  x ) ) )
4841, 47mpbird 247 . 2  |-  ( ( G  e.  ( Magma  i^i 
ExId  )  /\  Y  C_  X  /\  U  e.  Y
)  ->  A. x  e.  dom  dom  H (
( U H x )  =  x  /\  ( x H U )  =  x ) )
4920, 48jca 554 1  |-  ( ( G  e.  ( Magma  i^i 
ExId  )  /\  Y  C_  X  /\  U  e.  Y
)  ->  ( U  e.  dom  dom  H  /\  A. x  e.  dom  dom  H ( ( U H x )  =  x  /\  ( x H U )  =  x ) ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 196    /\ wa 384    /\ w3a 1037    = wceq 1483    e. wcel 1990   A.wral 2912    i^i cin 3573    C_ wss 3574    X. cxp 5112   dom cdm 5114   ran crn 5115    |` cres 5116   -->wf 5884   -onto->wfo 5886   ` cfv 5888  (class class class)co 6650  GIdcgi 27344    ExId cexid 33643   Magmacmagm 33647
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-sep 4781  ax-nul 4789  ax-pr 4906  ax-un 6949
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-ral 2917  df-rex 2918  df-reu 2919  df-rmo 2920  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-nul 3916  df-if 4087  df-sn 4178  df-pr 4180  df-op 4184  df-uni 4437  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-id 5024  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-fo 5894  df-fv 5896  df-riota 6611  df-ov 6653  df-gid 27348  df-exid 33644  df-mgmOLD 33648
This theorem is referenced by:  exidres  33677  exidresid  33678
  Copyright terms: Public domain W3C validator