Users' Mathboxes Mathbox for BJ < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  bj-elid Structured version   Visualization version   Unicode version

Theorem bj-elid 33085
Description: Characterization of the elements of  _I. (Contributed by BJ, 22-Jun-2019.)
Assertion
Ref Expression
bj-elid  |-  ( A  e.  _I  <->  ( A  e.  ( _V  X.  _V )  /\  ( 1st `  A
)  =  ( 2nd `  A ) ) )

Proof of Theorem bj-elid
Dummy variables  x  y are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 reli 5249 . . . . 5  |-  Rel  _I
2 df-rel 5121 . . . . 5  |-  ( Rel 
_I 
<->  _I  C_  ( _V  X.  _V ) )
31, 2mpbi 220 . . . 4  |-  _I  C_  ( _V  X.  _V )
43sseli 3599 . . 3  |-  ( A  e.  _I  ->  A  e.  ( _V  X.  _V ) )
5 1st2nd2 7205 . . . . . . 7  |-  ( A  e.  ( _V  X.  _V )  ->  A  = 
<. ( 1st `  A
) ,  ( 2nd `  A ) >. )
64, 5syl 17 . . . . . 6  |-  ( A  e.  _I  ->  A  =  <. ( 1st `  A
) ,  ( 2nd `  A ) >. )
76eleq1d 2686 . . . . 5  |-  ( A  e.  _I  ->  ( A  e.  _I  <->  <. ( 1st `  A ) ,  ( 2nd `  A )
>.  e.  _I  ) )
87ibi 256 . . . 4  |-  ( A  e.  _I  ->  <. ( 1st `  A ) ,  ( 2nd `  A
) >.  e.  _I  )
9 df-id 5024 . . . . . 6  |-  _I  =  { <. x ,  y
>.  |  x  =  y }
109eleq2i 2693 . . . . 5  |-  ( <.
( 1st `  A
) ,  ( 2nd `  A ) >.  e.  _I  <->  <.
( 1st `  A
) ,  ( 2nd `  A ) >.  e.  { <. x ,  y >.  |  x  =  y } )
11 fvex 6201 . . . . . 6  |-  ( 1st `  A )  e.  _V
12 fvex 6201 . . . . . 6  |-  ( 2nd `  A )  e.  _V
13 eqeq12 2635 . . . . . 6  |-  ( ( x  =  ( 1st `  A )  /\  y  =  ( 2nd `  A
) )  ->  (
x  =  y  <->  ( 1st `  A )  =  ( 2nd `  A ) ) )
1411, 12, 13opelopaba 4991 . . . . 5  |-  ( <.
( 1st `  A
) ,  ( 2nd `  A ) >.  e.  { <. x ,  y >.  |  x  =  y } 
<->  ( 1st `  A
)  =  ( 2nd `  A ) )
1510, 14bitri 264 . . . 4  |-  ( <.
( 1st `  A
) ,  ( 2nd `  A ) >.  e.  _I  <->  ( 1st `  A )  =  ( 2nd `  A
) )
168, 15sylib 208 . . 3  |-  ( A  e.  _I  ->  ( 1st `  A )  =  ( 2nd `  A
) )
174, 16jca 554 . 2  |-  ( A  e.  _I  ->  ( A  e.  ( _V  X.  _V )  /\  ( 1st `  A )  =  ( 2nd `  A
) ) )
185eleq1d 2686 . . . . 5  |-  ( A  e.  ( _V  X.  _V )  ->  ( A  e.  _I  <->  <. ( 1st `  A ) ,  ( 2nd `  A )
>.  e.  _I  ) )
1918biimprd 238 . . . 4  |-  ( A  e.  ( _V  X.  _V )  ->  ( <.
( 1st `  A
) ,  ( 2nd `  A ) >.  e.  _I  ->  A  e.  _I  )
)
2015, 19syl5bir 233 . . 3  |-  ( A  e.  ( _V  X.  _V )  ->  ( ( 1st `  A )  =  ( 2nd `  A
)  ->  A  e.  _I  ) )
2120imp 445 . 2  |-  ( ( A  e.  ( _V 
X.  _V )  /\  ( 1st `  A )  =  ( 2nd `  A
) )  ->  A  e.  _I  )
2217, 21impbii 199 1  |-  ( A  e.  _I  <->  ( A  e.  ( _V  X.  _V )  /\  ( 1st `  A
)  =  ( 2nd `  A ) ) )
Colors of variables: wff setvar class
Syntax hints:    <-> wb 196    /\ wa 384    = wceq 1483    e. wcel 1990   _Vcvv 3200    C_ wss 3574   <.cop 4183   {copab 4712    _I cid 5023    X. cxp 5112   Rel wrel 5119   ` cfv 5888   1stc1st 7166   2ndc2nd 7167
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ral 2917  df-rex 2918  df-rab 2921  df-v 3202  df-sbc 3436  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-nul 3916  df-if 4087  df-sn 4178  df-pr 4180  df-op 4184  df-uni 4437  df-br 4654  df-opab 4713  df-mpt 4730  df-id 5024  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-iota 5851  df-fun 5890  df-fv 5896  df-1st 7168  df-2nd 7169
This theorem is referenced by:  bj-elid2  33086  bj-elid3  33087
  Copyright terms: Public domain W3C validator