Users' Mathboxes Mathbox for BJ < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  bj-restn0 Structured version   Visualization version   Unicode version

Theorem bj-restn0 33043
Description: An elementwise intersection on a nonempty family is nonempty. (Contributed by BJ, 27-Apr-2021.)
Assertion
Ref Expression
bj-restn0  |-  ( ( X  e.  V  /\  A  e.  W )  ->  ( X  =/=  (/)  ->  ( Xt  A )  =/=  (/) ) )

Proof of Theorem bj-restn0
Dummy variables  x  y are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 n0 3931 . . . 4  |-  ( X  =/=  (/)  <->  E. y  y  e.  X )
2 vex 3203 . . . . . . . . . . 11  |-  y  e. 
_V
32inex1 4799 . . . . . . . . . 10  |-  ( y  i^i  A )  e. 
_V
43isseti 3209 . . . . . . . . 9  |-  E. x  x  =  ( y  i^i  A )
54jctr 565 . . . . . . . 8  |-  ( y  e.  X  ->  (
y  e.  X  /\  E. x  x  =  ( y  i^i  A ) ) )
65eximi 1762 . . . . . . 7  |-  ( E. y  y  e.  X  ->  E. y ( y  e.  X  /\  E. x  x  =  (
y  i^i  A )
) )
7 df-rex 2918 . . . . . . 7  |-  ( E. y  e.  X  E. x  x  =  (
y  i^i  A )  <->  E. y ( y  e.  X  /\  E. x  x  =  ( y  i^i  A ) ) )
86, 7sylibr 224 . . . . . 6  |-  ( E. y  y  e.  X  ->  E. y  e.  X  E. x  x  =  ( y  i^i  A
) )
9 rexcom4 3225 . . . . . 6  |-  ( E. y  e.  X  E. x  x  =  (
y  i^i  A )  <->  E. x E. y  e.  X  x  =  ( y  i^i  A ) )
108, 9sylib 208 . . . . 5  |-  ( E. y  y  e.  X  ->  E. x E. y  e.  X  x  =  ( y  i^i  A
) )
1110a1i 11 . . . 4  |-  ( ( X  e.  V  /\  A  e.  W )  ->  ( E. y  y  e.  X  ->  E. x E. y  e.  X  x  =  ( y  i^i  A ) ) )
121, 11syl5bi 232 . . 3  |-  ( ( X  e.  V  /\  A  e.  W )  ->  ( X  =/=  (/)  ->  E. x E. y  e.  X  x  =  ( y  i^i  A ) ) )
13 elrest 16088 . . . . 5  |-  ( ( X  e.  V  /\  A  e.  W )  ->  ( x  e.  ( Xt  A )  <->  E. y  e.  X  x  =  ( y  i^i  A
) ) )
1413biimprd 238 . . . 4  |-  ( ( X  e.  V  /\  A  e.  W )  ->  ( E. y  e.  X  x  =  ( y  i^i  A )  ->  x  e.  ( Xt  A ) ) )
1514eximdv 1846 . . 3  |-  ( ( X  e.  V  /\  A  e.  W )  ->  ( E. x E. y  e.  X  x  =  ( y  i^i 
A )  ->  E. x  x  e.  ( Xt  A
) ) )
1612, 15syld 47 . 2  |-  ( ( X  e.  V  /\  A  e.  W )  ->  ( X  =/=  (/)  ->  E. x  x  e.  ( Xt  A
) ) )
17 n0 3931 . 2  |-  ( ( Xt  A )  =/=  (/)  <->  E. x  x  e.  ( Xt  A
) )
1816, 17syl6ibr 242 1  |-  ( ( X  e.  V  /\  A  e.  W )  ->  ( X  =/=  (/)  ->  ( Xt  A )  =/=  (/) ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    /\ wa 384    = wceq 1483   E.wex 1704    e. wcel 1990    =/= wne 2794   E.wrex 2913    i^i cin 3573   (/)c0 3915  (class class class)co 6650   ↾t crest 16081
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pr 4906  ax-un 6949
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-ral 2917  df-rex 2918  df-reu 2919  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-nul 3916  df-if 4087  df-sn 4178  df-pr 4180  df-op 4184  df-uni 4437  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-id 5024  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-rest 16083
This theorem is referenced by:  bj-restn0b  33044
  Copyright terms: Public domain W3C validator