Users' Mathboxes Mathbox for BJ < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  bj-restuni2 Structured version   Visualization version   Unicode version

Theorem bj-restuni2 33051
Description: The union of an elementwise intersection on a family of sets by a subset is equal to that subset. See also restuni 20966 and restuni2 20971. (Contributed by BJ, 27-Apr-2021.)
Assertion
Ref Expression
bj-restuni2  |-  ( ( X  e.  V  /\  A  C_  U. X )  ->  U. ( Xt  A )  =  A )

Proof of Theorem bj-restuni2
StepHypRef Expression
1 uniexg 6955 . . . . 5  |-  ( X  e.  V  ->  U. X  e.  _V )
2 ssexg 4804 . . . . 5  |-  ( ( A  C_  U. X  /\  U. X  e.  _V )  ->  A  e.  _V )
31, 2sylan2 491 . . . 4  |-  ( ( A  C_  U. X  /\  X  e.  V )  ->  A  e.  _V )
43ancoms 469 . . 3  |-  ( ( X  e.  V  /\  A  C_  U. X )  ->  A  e.  _V )
5 bj-restuni 33050 . . 3  |-  ( ( X  e.  V  /\  A  e.  _V )  ->  U. ( Xt  A )  =  ( U. X  i^i  A ) )
64, 5syldan 487 . 2  |-  ( ( X  e.  V  /\  A  C_  U. X )  ->  U. ( Xt  A )  =  ( U. X  i^i  A ) )
7 inss2 3834 . . . . 5  |-  ( U. X  i^i  A )  C_  A
87a1i 11 . . . 4  |-  ( A 
C_  U. X  ->  ( U. X  i^i  A ) 
C_  A )
9 id 22 . . . . 5  |-  ( A 
C_  U. X  ->  A  C_ 
U. X )
10 ssid 3624 . . . . . 6  |-  A  C_  A
1110a1i 11 . . . . 5  |-  ( A 
C_  U. X  ->  A  C_  A )
129, 11ssind 3837 . . . 4  |-  ( A 
C_  U. X  ->  A  C_  ( U. X  i^i  A ) )
138, 12eqssd 3620 . . 3  |-  ( A 
C_  U. X  ->  ( U. X  i^i  A )  =  A )
1413adantl 482 . 2  |-  ( ( X  e.  V  /\  A  C_  U. X )  ->  ( U. X  i^i  A )  =  A )
156, 14eqtrd 2656 1  |-  ( ( X  e.  V  /\  A  C_  U. X )  ->  U. ( Xt  A )  =  A )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    /\ wa 384    = wceq 1483    e. wcel 1990   _Vcvv 3200    i^i cin 3573    C_ wss 3574   U.cuni 4436  (class class class)co 6650   ↾t crest 16081
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pr 4906  ax-un 6949
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-ral 2917  df-rex 2918  df-reu 2919  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-nul 3916  df-if 4087  df-sn 4178  df-pr 4180  df-op 4184  df-uni 4437  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-id 5024  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-rest 16083
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator