MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  blrnps Structured version   Visualization version   Unicode version

Theorem blrnps 22213
Description: Membership in the range of the ball function. Note that  ran  ( ball `  D ) is the collection of all balls for metric 
D. (Contributed by NM, 31-Aug-2006.) (Revised by Mario Carneiro, 12-Nov-2013.) (Revised by Thierry Arnoux, 11-Mar-2018.)
Assertion
Ref Expression
blrnps  |-  ( D  e.  (PsMet `  X
)  ->  ( A  e.  ran  ( ball `  D
)  <->  E. x  e.  X  E. r  e.  RR*  A  =  ( x (
ball `  D )
r ) ) )
Distinct variable groups:    x, r, A    D, r, x    X, r, x

Proof of Theorem blrnps
StepHypRef Expression
1 blfps 22211 . 2  |-  ( D  e.  (PsMet `  X
)  ->  ( ball `  D ) : ( X  X.  RR* ) --> ~P X )
2 ffn 6045 . 2  |-  ( (
ball `  D ) : ( X  X.  RR* ) --> ~P X  -> 
( ball `  D )  Fn  ( X  X.  RR* ) )
3 ovelrn 6810 . 2  |-  ( (
ball `  D )  Fn  ( X  X.  RR* )  ->  ( A  e. 
ran  ( ball `  D
)  <->  E. x  e.  X  E. r  e.  RR*  A  =  ( x (
ball `  D )
r ) ) )
41, 2, 33syl 18 1  |-  ( D  e.  (PsMet `  X
)  ->  ( A  e.  ran  ( ball `  D
)  <->  E. x  e.  X  E. r  e.  RR*  A  =  ( x (
ball `  D )
r ) ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 196    = wceq 1483    e. wcel 1990   E.wrex 2913   ~Pcpw 4158    X. cxp 5112   ran crn 5115    Fn wfn 5883   -->wf 5884   ` cfv 5888  (class class class)co 6650   RR*cxr 10073  PsMetcpsmet 19730   ballcbl 19733
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-cnex 9992  ax-resscn 9993
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-ral 2917  df-rex 2918  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-op 4184  df-uni 4437  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-id 5024  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-fv 5896  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-1st 7168  df-2nd 7169  df-map 7859  df-xr 10078  df-psmet 19738  df-bl 19741
This theorem is referenced by:  blssps  22229
  Copyright terms: Public domain W3C validator