| Mathbox for Jonathan Ben-Naim |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > bnj1253 | Structured version Visualization version Unicode version | ||
| Description: Technical lemma for bnj60 31130. This lemma may no longer be used or have become an indirect lemma of the theorem in question (i.e. a lemma of a lemma... of the theorem). (Contributed by Jonathan Ben-Naim, 3-Jun-2011.) (New usage is discouraged.) |
| Ref | Expression |
|---|---|
| bnj1253.1 |
|
| bnj1253.2 |
|
| bnj1253.3 |
|
| bnj1253.4 |
|
| bnj1253.5 |
|
| bnj1253.6 |
|
| bnj1253.7 |
|
| Ref | Expression |
|---|---|
| bnj1253 |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | bnj1253.6 |
. . . 4
| |
| 2 | 1 | bnj1254 30880 |
. . 3
|
| 3 | bnj1253.1 |
. . . . . . . . . . 11
| |
| 4 | bnj1253.2 |
. . . . . . . . . . 11
| |
| 5 | bnj1253.3 |
. . . . . . . . . . 11
| |
| 6 | bnj1253.4 |
. . . . . . . . . . 11
| |
| 7 | bnj1253.5 |
. . . . . . . . . . 11
| |
| 8 | bnj1253.7 |
. . . . . . . . . . 11
| |
| 9 | 3, 4, 5, 6, 7, 1, 8 | bnj1256 31083 |
. . . . . . . . . 10
|
| 10 | 6 | bnj1292 30886 |
. . . . . . . . . . . 12
|
| 11 | fndm 5990 |
. . . . . . . . . . . 12
| |
| 12 | 10, 11 | syl5sseq 3653 |
. . . . . . . . . . 11
|
| 13 | fnssres 6004 |
. . . . . . . . . . 11
| |
| 14 | 12, 13 | mpdan 702 |
. . . . . . . . . 10
|
| 15 | 9, 14 | bnj31 30785 |
. . . . . . . . 9
|
| 16 | 15 | bnj1265 30883 |
. . . . . . . 8
|
| 17 | 3, 4, 5, 6, 7, 1, 8 | bnj1259 31084 |
. . . . . . . . . 10
|
| 18 | 6 | bnj1293 30887 |
. . . . . . . . . . . 12
|
| 19 | fndm 5990 |
. . . . . . . . . . . 12
| |
| 20 | 18, 19 | syl5sseq 3653 |
. . . . . . . . . . 11
|
| 21 | fnssres 6004 |
. . . . . . . . . . 11
| |
| 22 | 20, 21 | mpdan 702 |
. . . . . . . . . 10
|
| 23 | 17, 22 | bnj31 30785 |
. . . . . . . . 9
|
| 24 | 23 | bnj1265 30883 |
. . . . . . . 8
|
| 25 | ssid 3624 |
. . . . . . . . 9
| |
| 26 | fvreseq 6319 |
. . . . . . . . 9
| |
| 27 | 25, 26 | mpan2 707 |
. . . . . . . 8
|
| 28 | 16, 24, 27 | syl2anc 693 |
. . . . . . 7
|
| 29 | residm 5430 |
. . . . . . . 8
| |
| 30 | residm 5430 |
. . . . . . . 8
| |
| 31 | 29, 30 | eqeq12i 2636 |
. . . . . . 7
|
| 32 | df-ral 2917 |
. . . . . . 7
| |
| 33 | 28, 31, 32 | 3bitr3g 302 |
. . . . . 6
|
| 34 | fvres 6207 |
. . . . . . . . 9
| |
| 35 | fvres 6207 |
. . . . . . . . 9
| |
| 36 | 34, 35 | eqeq12d 2637 |
. . . . . . . 8
|
| 37 | 36 | pm5.74i 260 |
. . . . . . 7
|
| 38 | 37 | albii 1747 |
. . . . . 6
|
| 39 | 33, 38 | syl6bb 276 |
. . . . 5
|
| 40 | 39 | necon3abid 2830 |
. . . 4
|
| 41 | df-rex 2918 |
. . . . 5
| |
| 42 | pm4.61 442 |
. . . . . . 7
| |
| 43 | df-ne 2795 |
. . . . . . . 8
| |
| 44 | 43 | anbi2i 730 |
. . . . . . 7
|
| 45 | 42, 44 | bitr4i 267 |
. . . . . 6
|
| 46 | 45 | exbii 1774 |
. . . . 5
|
| 47 | exnal 1754 |
. . . . 5
| |
| 48 | 41, 46, 47 | 3bitr2ri 289 |
. . . 4
|
| 49 | 40, 48 | syl6bb 276 |
. . 3
|
| 50 | 2, 49 | mpbid 222 |
. 2
|
| 51 | 7 | neeq1i 2858 |
. . 3
|
| 52 | rabn0 3958 |
. . 3
| |
| 53 | 51, 52 | bitri 264 |
. 2
|
| 54 | 50, 53 | sylibr 224 |
1
|
| Colors of variables: wff setvar class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1722 ax-4 1737 ax-5 1839 ax-6 1888 ax-7 1935 ax-8 1992 ax-9 1999 ax-10 2019 ax-11 2034 ax-12 2047 ax-13 2246 ax-ext 2602 ax-sep 4781 ax-nul 4789 ax-pow 4843 ax-pr 4906 |
| This theorem depends on definitions: df-bi 197 df-or 385 df-an 386 df-3an 1039 df-tru 1486 df-ex 1705 df-nf 1710 df-sb 1881 df-eu 2474 df-mo 2475 df-clab 2609 df-cleq 2615 df-clel 2618 df-nfc 2753 df-ne 2795 df-ral 2917 df-rex 2918 df-rab 2921 df-v 3202 df-sbc 3436 df-csb 3534 df-dif 3577 df-un 3579 df-in 3581 df-ss 3588 df-nul 3916 df-if 4087 df-sn 4178 df-pr 4180 df-op 4184 df-uni 4437 df-br 4654 df-opab 4713 df-mpt 4730 df-id 5024 df-xp 5120 df-rel 5121 df-cnv 5122 df-co 5123 df-dm 5124 df-rn 5125 df-res 5126 df-ima 5127 df-iota 5851 df-fun 5890 df-fn 5891 df-fv 5896 df-bnj17 30753 |
| This theorem is referenced by: bnj1311 31092 |
| Copyright terms: Public domain | W3C validator |