Users' Mathboxes Mathbox for Jonathan Ben-Naim < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  bnj126 Structured version   Visualization version   Unicode version

Theorem bnj126 30943
Description: Technical lemma for bnj150 30946. This lemma may no longer be used or have become an indirect lemma of the theorem in question (i.e. a lemma of a lemma... of the theorem). (Contributed by Jonathan Ben-Naim, 3-Jun-2011.) (New usage is discouraged.)
Hypotheses
Ref Expression
bnj126.1  |-  ( ps  <->  A. i  e.  om  ( suc  i  e.  n  ->  ( f `  suc  i )  =  U_ y  e.  ( f `  i )  pred (
y ,  A ,  R ) ) )
bnj126.2  |-  ( ps'  <->  [. 1o  /  n ]. ps )
bnj126.3  |-  ( ps"  <->  [. F  / 
f ]. ps' )
bnj126.4  |-  F  =  { <. (/) ,  pred (
x ,  A ,  R ) >. }
Assertion
Ref Expression
bnj126  |-  ( ps"  <->  A. i  e.  om  ( suc  i  e.  1o  ->  ( F `  suc  i )  = 
U_ y  e.  ( F `  i ) 
pred ( y ,  A ,  R ) ) )
Distinct variable groups:    A, f, n    f, F, i, y    R, f, n    i, n, y
Allowed substitution hints:    ps( x, y, f, i, n)    A( x, y, i)    R( x, y, i)    F( x, n)    ps'( x, y, f, i, n)    ps"( x, y, f, i, n)

Proof of Theorem bnj126
StepHypRef Expression
1 bnj126.3 . 2  |-  ( ps"  <->  [. F  / 
f ]. ps' )
2 bnj126.2 . . 3  |-  ( ps'  <->  [. 1o  /  n ]. ps )
32sbcbii 3491 . 2  |-  ( [. F  /  f ]. ps'  <->  [. F  / 
f ]. [. 1o  /  n ]. ps )
4 bnj126.1 . . 3  |-  ( ps  <->  A. i  e.  om  ( suc  i  e.  n  ->  ( f `  suc  i )  =  U_ y  e.  ( f `  i )  pred (
y ,  A ,  R ) ) )
5 bnj126.4 . . . 4  |-  F  =  { <. (/) ,  pred (
x ,  A ,  R ) >. }
65bnj95 30934 . . 3  |-  F  e. 
_V
74, 6bnj106 30938 . 2  |-  ( [. F  /  f ]. [. 1o  /  n ]. ps  <->  A. i  e.  om  ( suc  i  e.  1o  ->  ( F `  suc  i )  = 
U_ y  e.  ( F `  i ) 
pred ( y ,  A ,  R ) ) )
81, 3, 73bitri 286 1  |-  ( ps"  <->  A. i  e.  om  ( suc  i  e.  1o  ->  ( F `  suc  i )  = 
U_ y  e.  ( F `  i ) 
pred ( y ,  A ,  R ) ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 196    = wceq 1483    e. wcel 1990   A.wral 2912   [.wsbc 3435   (/)c0 3915   {csn 4177   <.cop 4183   U_ciun 4520   suc csuc 5725   ` cfv 5888   omcom 7065   1oc1o 7553    predc-bnj14 30754
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ral 2917  df-rex 2918  df-v 3202  df-sbc 3436  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-nul 3916  df-pw 4160  df-sn 4178  df-pr 4180  df-uni 4437  df-iun 4522  df-br 4654  df-suc 5729  df-iota 5851  df-fv 5896  df-1o 7560
This theorem is referenced by:  bnj150  30946  bnj153  30950
  Copyright terms: Public domain W3C validator