MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  fnsnb Structured version   Visualization version   Unicode version

Theorem fnsnb 6432
Description: A function whose domain is a singleton can be represented as a singleton of an ordered pair. (Contributed by Jonathan Ben-Naim, 3-Jun-2011.) Revised to add reverse implication. (Revised by NM, 29-Dec-2018.)
Hypothesis
Ref Expression
fnsnb.1  |-  A  e. 
_V
Assertion
Ref Expression
fnsnb  |-  ( F  Fn  { A }  <->  F  =  { <. A , 
( F `  A
) >. } )

Proof of Theorem fnsnb
Dummy variable  x is distinct from all other variables.
StepHypRef Expression
1 fnresdm 6000 . . . . . . . 8  |-  ( F  Fn  { A }  ->  ( F  |`  { A } )  =  F )
2 fnfun 5988 . . . . . . . . 9  |-  ( F  Fn  { A }  ->  Fun  F )
3 funressn 6426 . . . . . . . . 9  |-  ( Fun 
F  ->  ( F  |` 
{ A } ) 
C_  { <. A , 
( F `  A
) >. } )
42, 3syl 17 . . . . . . . 8  |-  ( F  Fn  { A }  ->  ( F  |`  { A } )  C_  { <. A ,  ( F `  A ) >. } )
51, 4eqsstr3d 3640 . . . . . . 7  |-  ( F  Fn  { A }  ->  F  C_  { <. A , 
( F `  A
) >. } )
65sseld 3602 . . . . . 6  |-  ( F  Fn  { A }  ->  ( x  e.  F  ->  x  e.  { <. A ,  ( F `  A ) >. } ) )
7 elsni 4194 . . . . . 6  |-  ( x  e.  { <. A , 
( F `  A
) >. }  ->  x  =  <. A ,  ( F `  A )
>. )
86, 7syl6 35 . . . . 5  |-  ( F  Fn  { A }  ->  ( x  e.  F  ->  x  =  <. A , 
( F `  A
) >. ) )
9 df-fn 5891 . . . . . . . 8  |-  ( F  Fn  { A }  <->  ( Fun  F  /\  dom  F  =  { A }
) )
10 fnsnb.1 . . . . . . . . . . 11  |-  A  e. 
_V
1110snid 4208 . . . . . . . . . 10  |-  A  e. 
{ A }
12 eleq2 2690 . . . . . . . . . 10  |-  ( dom 
F  =  { A }  ->  ( A  e. 
dom  F  <->  A  e.  { A } ) )
1311, 12mpbiri 248 . . . . . . . . 9  |-  ( dom 
F  =  { A }  ->  A  e.  dom  F )
1413anim2i 593 . . . . . . . 8  |-  ( ( Fun  F  /\  dom  F  =  { A }
)  ->  ( Fun  F  /\  A  e.  dom  F ) )
159, 14sylbi 207 . . . . . . 7  |-  ( F  Fn  { A }  ->  ( Fun  F  /\  A  e.  dom  F ) )
16 funfvop 6329 . . . . . . 7  |-  ( ( Fun  F  /\  A  e.  dom  F )  ->  <. A ,  ( F `
 A ) >.  e.  F )
1715, 16syl 17 . . . . . 6  |-  ( F  Fn  { A }  -> 
<. A ,  ( F `
 A ) >.  e.  F )
18 eleq1 2689 . . . . . 6  |-  ( x  =  <. A ,  ( F `  A )
>.  ->  ( x  e.  F  <->  <. A ,  ( F `  A )
>.  e.  F ) )
1917, 18syl5ibrcom 237 . . . . 5  |-  ( F  Fn  { A }  ->  ( x  =  <. A ,  ( F `  A ) >.  ->  x  e.  F ) )
208, 19impbid 202 . . . 4  |-  ( F  Fn  { A }  ->  ( x  e.  F  <->  x  =  <. A ,  ( F `  A )
>. ) )
21 velsn 4193 . . . 4  |-  ( x  e.  { <. A , 
( F `  A
) >. }  <->  x  =  <. A ,  ( F `
 A ) >.
)
2220, 21syl6bbr 278 . . 3  |-  ( F  Fn  { A }  ->  ( x  e.  F  <->  x  e.  { <. A , 
( F `  A
) >. } ) )
2322eqrdv 2620 . 2  |-  ( F  Fn  { A }  ->  F  =  { <. A ,  ( F `  A ) >. } )
24 fvex 6201 . . . 4  |-  ( F `
 A )  e. 
_V
2510, 24fnsn 5946 . . 3  |-  { <. A ,  ( F `  A ) >. }  Fn  { A }
26 fneq1 5979 . . 3  |-  ( F  =  { <. A , 
( F `  A
) >. }  ->  ( F  Fn  { A } 
<->  { <. A ,  ( F `  A )
>. }  Fn  { A } ) )
2725, 26mpbiri 248 . 2  |-  ( F  =  { <. A , 
( F `  A
) >. }  ->  F  Fn  { A } )
2823, 27impbii 199 1  |-  ( F  Fn  { A }  <->  F  =  { <. A , 
( F `  A
) >. } )
Colors of variables: wff setvar class
Syntax hints:    <-> wb 196    /\ wa 384    = wceq 1483    e. wcel 1990   _Vcvv 3200    C_ wss 3574   {csn 4177   <.cop 4183   dom cdm 5114    |` cres 5116   Fun wfun 5882    Fn wfn 5883   ` cfv 5888
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-sep 4781  ax-nul 4789  ax-pr 4906
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-ral 2917  df-rex 2918  df-reu 2919  df-rab 2921  df-v 3202  df-sbc 3436  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-nul 3916  df-if 4087  df-sn 4178  df-pr 4180  df-op 4184  df-uni 4437  df-br 4654  df-opab 4713  df-id 5024  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896
This theorem is referenced by:  fnprb  6472
  Copyright terms: Public domain W3C validator