| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > fnsnb | Structured version Visualization version Unicode version | ||
| Description: A function whose domain is a singleton can be represented as a singleton of an ordered pair. (Contributed by Jonathan Ben-Naim, 3-Jun-2011.) Revised to add reverse implication. (Revised by NM, 29-Dec-2018.) |
| Ref | Expression |
|---|---|
| fnsnb.1 |
|
| Ref | Expression |
|---|---|
| fnsnb |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | fnresdm 6000 |
. . . . . . . 8
| |
| 2 | fnfun 5988 |
. . . . . . . . 9
| |
| 3 | funressn 6426 |
. . . . . . . . 9
| |
| 4 | 2, 3 | syl 17 |
. . . . . . . 8
|
| 5 | 1, 4 | eqsstr3d 3640 |
. . . . . . 7
|
| 6 | 5 | sseld 3602 |
. . . . . 6
|
| 7 | elsni 4194 |
. . . . . 6
| |
| 8 | 6, 7 | syl6 35 |
. . . . 5
|
| 9 | df-fn 5891 |
. . . . . . . 8
| |
| 10 | fnsnb.1 |
. . . . . . . . . . 11
| |
| 11 | 10 | snid 4208 |
. . . . . . . . . 10
|
| 12 | eleq2 2690 |
. . . . . . . . . 10
| |
| 13 | 11, 12 | mpbiri 248 |
. . . . . . . . 9
|
| 14 | 13 | anim2i 593 |
. . . . . . . 8
|
| 15 | 9, 14 | sylbi 207 |
. . . . . . 7
|
| 16 | funfvop 6329 |
. . . . . . 7
| |
| 17 | 15, 16 | syl 17 |
. . . . . 6
|
| 18 | eleq1 2689 |
. . . . . 6
| |
| 19 | 17, 18 | syl5ibrcom 237 |
. . . . 5
|
| 20 | 8, 19 | impbid 202 |
. . . 4
|
| 21 | velsn 4193 |
. . . 4
| |
| 22 | 20, 21 | syl6bbr 278 |
. . 3
|
| 23 | 22 | eqrdv 2620 |
. 2
|
| 24 | fvex 6201 |
. . . 4
| |
| 25 | 10, 24 | fnsn 5946 |
. . 3
|
| 26 | fneq1 5979 |
. . 3
| |
| 27 | 25, 26 | mpbiri 248 |
. 2
|
| 28 | 23, 27 | impbii 199 |
1
|
| Colors of variables: wff setvar class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1722 ax-4 1737 ax-5 1839 ax-6 1888 ax-7 1935 ax-9 1999 ax-10 2019 ax-11 2034 ax-12 2047 ax-13 2246 ax-ext 2602 ax-sep 4781 ax-nul 4789 ax-pr 4906 |
| This theorem depends on definitions: df-bi 197 df-or 385 df-an 386 df-3an 1039 df-tru 1486 df-ex 1705 df-nf 1710 df-sb 1881 df-eu 2474 df-mo 2475 df-clab 2609 df-cleq 2615 df-clel 2618 df-nfc 2753 df-ne 2795 df-ral 2917 df-rex 2918 df-reu 2919 df-rab 2921 df-v 3202 df-sbc 3436 df-dif 3577 df-un 3579 df-in 3581 df-ss 3588 df-nul 3916 df-if 4087 df-sn 4178 df-pr 4180 df-op 4184 df-uni 4437 df-br 4654 df-opab 4713 df-id 5024 df-xp 5120 df-rel 5121 df-cnv 5122 df-co 5123 df-dm 5124 df-rn 5125 df-res 5126 df-ima 5127 df-iota 5851 df-fun 5890 df-fn 5891 df-f 5892 df-f1 5893 df-fo 5894 df-f1o 5895 df-fv 5896 |
| This theorem is referenced by: fnprb 6472 |
| Copyright terms: Public domain | W3C validator |