Users' Mathboxes Mathbox for Jonathan Ben-Naim < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  bnj149 Structured version   Visualization version   Unicode version

Theorem bnj149 30945
Description: Technical lemma for bnj151 30947. This lemma may no longer be used or have become an indirect lemma of the theorem in question (i.e. a lemma of a lemma... of the theorem). (Contributed by Jonathan Ben-Naim, 3-Jun-2011.) (Proof shortened by Mario Carneiro, 22-Dec-2016.) (New usage is discouraged.)
Hypotheses
Ref Expression
bnj149.1  |-  ( th1  <->  (
( R  FrSe  A  /\  x  e.  A
)  ->  E* f
( f  Fn  1o  /\  ph'  /\  ps' ) ) )
bnj149.2  |-  ( ze0  <->  (
f  Fn  1o  /\  ph' 
/\  ps' ) )
bnj149.3  |-  ( ze1  <->  [. g  /  f ]. ze0 )
bnj149.4  |-  ( ph1  <->  [. g  /  f ]. ph' )
bnj149.5  |-  ( ps1  <->  [. g  /  f ]. ps' )
bnj149.6  |-  ( ph'  <->  (
f `  (/) )  = 
pred ( x ,  A ,  R ) )
Assertion
Ref Expression
bnj149  |-  th1
Distinct variable groups:    A, f,
g, x    R, f,
g, x    f, ze1    g, ze0
Allowed substitution hints:    ph'( x, f, g)    ps'( x, f, g)    ze0( x, f)    ph1( x, f, g)    ps1( x, f, g)    th1( x, f, g)    ze1( x, g)

Proof of Theorem bnj149
StepHypRef Expression
1 simpr1 1067 . . . . . . . 8  |-  ( ( ( R  FrSe  A  /\  x  e.  A
)  /\  ( f  Fn  1o  /\  ph'  /\  ps' ) )  ->  f  Fn  1o )
2 df1o2 7572 . . . . . . . . 9  |-  1o  =  { (/) }
32fneq2i 5986 . . . . . . . 8  |-  ( f  Fn  1o  <->  f  Fn  {
(/) } )
41, 3sylib 208 . . . . . . 7  |-  ( ( ( R  FrSe  A  /\  x  e.  A
)  /\  ( f  Fn  1o  /\  ph'  /\  ps' ) )  ->  f  Fn  { (/)
} )
5 simpr2 1068 . . . . . . . . . 10  |-  ( ( ( R  FrSe  A  /\  x  e.  A
)  /\  ( f  Fn  1o  /\  ph'  /\  ps' ) )  ->  ph' )
6 bnj149.6 . . . . . . . . . 10  |-  ( ph'  <->  (
f `  (/) )  = 
pred ( x ,  A ,  R ) )
75, 6sylib 208 . . . . . . . . 9  |-  ( ( ( R  FrSe  A  /\  x  e.  A
)  /\  ( f  Fn  1o  /\  ph'  /\  ps' ) )  ->  ( f `  (/) )  =  pred (
x ,  A ,  R ) )
8 fvex 6201 . . . . . . . . . 10  |-  ( f `
 (/) )  e.  _V
98elsn 4192 . . . . . . . . 9  |-  ( ( f `  (/) )  e. 
{  pred ( x ,  A ,  R ) }  <->  ( f `  (/) )  =  pred (
x ,  A ,  R ) )
107, 9sylibr 224 . . . . . . . 8  |-  ( ( ( R  FrSe  A  /\  x  e.  A
)  /\  ( f  Fn  1o  /\  ph'  /\  ps' ) )  ->  ( f `  (/) )  e.  {  pred ( x ,  A ,  R ) } )
11 0ex 4790 . . . . . . . . 9  |-  (/)  e.  _V
12 fveq2 6191 . . . . . . . . . 10  |-  ( g  =  (/)  ->  ( f `
 g )  =  ( f `  (/) ) )
1312eleq1d 2686 . . . . . . . . 9  |-  ( g  =  (/)  ->  ( ( f `  g )  e.  {  pred (
x ,  A ,  R ) }  <->  ( f `  (/) )  e.  {  pred ( x ,  A ,  R ) } ) )
1411, 13ralsn 4222 . . . . . . . 8  |-  ( A. g  e.  { (/) }  (
f `  g )  e.  {  pred ( x ,  A ,  R ) }  <->  ( f `  (/) )  e.  {  pred ( x ,  A ,  R ) } )
1510, 14sylibr 224 . . . . . . 7  |-  ( ( ( R  FrSe  A  /\  x  e.  A
)  /\  ( f  Fn  1o  /\  ph'  /\  ps' ) )  ->  A. g  e.  { (/)
}  ( f `  g )  e.  {  pred ( x ,  A ,  R ) } )
16 ffnfv 6388 . . . . . . 7  |-  ( f : { (/) } --> {  pred ( x ,  A ,  R ) }  <->  ( f  Fn  { (/) }  /\  A. g  e.  { (/) }  (
f `  g )  e.  {  pred ( x ,  A ,  R ) } ) )
174, 15, 16sylanbrc 698 . . . . . 6  |-  ( ( ( R  FrSe  A  /\  x  e.  A
)  /\  ( f  Fn  1o  /\  ph'  /\  ps' ) )  ->  f : { (/)
} --> {  pred (
x ,  A ,  R ) } )
18 bnj93 30933 . . . . . . . 8  |-  ( ( R  FrSe  A  /\  x  e.  A )  ->  pred ( x ,  A ,  R )  e.  _V )
1918adantr 481 . . . . . . 7  |-  ( ( ( R  FrSe  A  /\  x  e.  A
)  /\  ( f  Fn  1o  /\  ph'  /\  ps' ) )  ->  pred ( x ,  A ,  R )  e.  _V )
20 fsng 6404 . . . . . . 7  |-  ( (
(/)  e.  _V  /\  pred ( x ,  A ,  R )  e.  _V )  ->  ( f : { (/) } --> {  pred ( x ,  A ,  R ) }  <->  f  =  { <. (/) ,  pred (
x ,  A ,  R ) >. } ) )
2111, 19, 20sylancr 695 . . . . . 6  |-  ( ( ( R  FrSe  A  /\  x  e.  A
)  /\  ( f  Fn  1o  /\  ph'  /\  ps' ) )  ->  ( f : { (/) } --> {  pred ( x ,  A ,  R ) }  <->  f  =  { <. (/) ,  pred (
x ,  A ,  R ) >. } ) )
2217, 21mpbid 222 . . . . 5  |-  ( ( ( R  FrSe  A  /\  x  e.  A
)  /\  ( f  Fn  1o  /\  ph'  /\  ps' ) )  ->  f  =  { <.
(/) ,  pred ( x ,  A ,  R
) >. } )
2322ex 450 . . . 4  |-  ( ( R  FrSe  A  /\  x  e.  A )  ->  ( ( f  Fn  1o  /\  ph'  /\  ps' )  -> 
f  =  { <. (/)
,  pred ( x ,  A ,  R )
>. } ) )
2423alrimiv 1855 . . 3  |-  ( ( R  FrSe  A  /\  x  e.  A )  ->  A. f ( ( f  Fn  1o  /\  ph' 
/\  ps' )  ->  f  =  { <. (/) ,  pred (
x ,  A ,  R ) >. } ) )
25 mo2icl 3385 . . 3  |-  ( A. f ( ( f  Fn  1o  /\  ph'  /\  ps' )  -> 
f  =  { <. (/)
,  pred ( x ,  A ,  R )
>. } )  ->  E* f ( f  Fn  1o  /\  ph'  /\  ps' ) )
2624, 25syl 17 . 2  |-  ( ( R  FrSe  A  /\  x  e.  A )  ->  E* f ( f  Fn  1o  /\  ph'  /\  ps' ) )
27 bnj149.1 . 2  |-  ( th1  <->  (
( R  FrSe  A  /\  x  e.  A
)  ->  E* f
( f  Fn  1o  /\  ph'  /\  ps' ) ) )
2826, 27mpbir 221 1  |-  th1
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 196    /\ wa 384    /\ w3a 1037   A.wal 1481    = wceq 1483    e. wcel 1990   E*wmo 2471   A.wral 2912   _Vcvv 3200   [.wsbc 3435   (/)c0 3915   {csn 4177   <.cop 4183    Fn wfn 5883   -->wf 5884   ` cfv 5888   1oc1o 7553    predc-bnj14 30754    FrSe w-bnj15 30758
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-sep 4781  ax-nul 4789  ax-pr 4906
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ral 2917  df-rex 2918  df-reu 2919  df-rab 2921  df-v 3202  df-sbc 3436  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-nul 3916  df-if 4087  df-sn 4178  df-pr 4180  df-op 4184  df-uni 4437  df-br 4654  df-opab 4713  df-mpt 4730  df-id 5024  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-1o 7560  df-bnj13 30757  df-bnj15 30759
This theorem is referenced by:  bnj151  30947
  Copyright terms: Public domain W3C validator