| Mathbox for Jonathan Ben-Naim |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > bnj1542 | Structured version Visualization version Unicode version | ||
| Description: First-order logic and set theory. (Contributed by Jonathan Ben-Naim, 3-Jun-2011.) (New usage is discouraged.) |
| Ref | Expression |
|---|---|
| bnj1542.1 |
|
| bnj1542.2 |
|
| bnj1542.3 |
|
| bnj1542.4 |
|
| Ref | Expression |
|---|---|
| bnj1542 |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | bnj1542.3 |
. . 3
| |
| 2 | bnj1542.1 |
. . . 4
| |
| 3 | bnj1542.2 |
. . . 4
| |
| 4 | eqfnfv 6311 |
. . . . . 6
| |
| 5 | 4 | necon3abid 2830 |
. . . . 5
|
| 6 | df-ne 2795 |
. . . . . . 7
| |
| 7 | 6 | rexbii 3041 |
. . . . . 6
|
| 8 | rexnal 2995 |
. . . . . 6
| |
| 9 | 7, 8 | bitri 264 |
. . . . 5
|
| 10 | 5, 9 | syl6bbr 278 |
. . . 4
|
| 11 | 2, 3, 10 | syl2anc 693 |
. . 3
|
| 12 | 1, 11 | mpbid 222 |
. 2
|
| 13 | nfv 1843 |
. . 3
| |
| 14 | bnj1542.4 |
. . . . . 6
| |
| 15 | 14 | nfcii 2755 |
. . . . 5
|
| 16 | nfcv 2764 |
. . . . 5
| |
| 17 | 15, 16 | nffv 6198 |
. . . 4
|
| 18 | nfcv 2764 |
. . . 4
| |
| 19 | 17, 18 | nfne 2894 |
. . 3
|
| 20 | fveq2 6191 |
. . . 4
| |
| 21 | fveq2 6191 |
. . . 4
| |
| 22 | 20, 21 | neeq12d 2855 |
. . 3
|
| 23 | 13, 19, 22 | cbvrex 3168 |
. 2
|
| 24 | 12, 23 | sylibr 224 |
1
|
| Colors of variables: wff setvar class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1722 ax-4 1737 ax-5 1839 ax-6 1888 ax-7 1935 ax-8 1992 ax-9 1999 ax-10 2019 ax-11 2034 ax-12 2047 ax-13 2246 ax-ext 2602 ax-sep 4781 ax-nul 4789 ax-pow 4843 ax-pr 4906 |
| This theorem depends on definitions: df-bi 197 df-or 385 df-an 386 df-3an 1039 df-tru 1486 df-ex 1705 df-nf 1710 df-sb 1881 df-eu 2474 df-mo 2475 df-clab 2609 df-cleq 2615 df-clel 2618 df-nfc 2753 df-ne 2795 df-ral 2917 df-rex 2918 df-rab 2921 df-v 3202 df-sbc 3436 df-csb 3534 df-dif 3577 df-un 3579 df-in 3581 df-ss 3588 df-nul 3916 df-if 4087 df-sn 4178 df-pr 4180 df-op 4184 df-uni 4437 df-br 4654 df-opab 4713 df-mpt 4730 df-id 5024 df-xp 5120 df-rel 5121 df-cnv 5122 df-co 5123 df-dm 5124 df-rn 5125 df-res 5126 df-ima 5127 df-iota 5851 df-fun 5890 df-fn 5891 df-fv 5896 |
| This theorem is referenced by: bnj1523 31139 |
| Copyright terms: Public domain | W3C validator |