Users' Mathboxes Mathbox for Jonathan Ben-Naim < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  bnj941 Structured version   Visualization version   Unicode version

Theorem bnj941 30843
Description: First-order logic and set theory. (Contributed by Jonathan Ben-Naim, 3-Jun-2011.) (New usage is discouraged.)
Hypothesis
Ref Expression
bnj941.1  |-  G  =  ( f  u.  { <. n ,  C >. } )
Assertion
Ref Expression
bnj941  |-  ( C  e.  _V  ->  (
( p  =  suc  n  /\  f  Fn  n
)  ->  G  Fn  p ) )

Proof of Theorem bnj941
StepHypRef Expression
1 bnj941.1 . . . . 5  |-  G  =  ( f  u.  { <. n ,  C >. } )
2 opeq2 4403 . . . . . . 7  |-  ( C  =  if ( C  e.  _V ,  C ,  (/) )  ->  <. n ,  C >.  =  <. n ,  if ( C  e.  _V ,  C ,  (/) ) >. )
32sneqd 4189 . . . . . 6  |-  ( C  =  if ( C  e.  _V ,  C ,  (/) )  ->  { <. n ,  C >. }  =  { <. n ,  if ( C  e.  _V ,  C ,  (/) ) >. } )
43uneq2d 3767 . . . . 5  |-  ( C  =  if ( C  e.  _V ,  C ,  (/) )  ->  (
f  u.  { <. n ,  C >. } )  =  ( f  u. 
{ <. n ,  if ( C  e.  _V ,  C ,  (/) ) >. } ) )
51, 4syl5eq 2668 . . . 4  |-  ( C  =  if ( C  e.  _V ,  C ,  (/) )  ->  G  =  ( f  u. 
{ <. n ,  if ( C  e.  _V ,  C ,  (/) ) >. } ) )
65fneq1d 5981 . . 3  |-  ( C  =  if ( C  e.  _V ,  C ,  (/) )  ->  ( G  Fn  p  <->  ( f  u.  { <. n ,  if ( C  e.  _V ,  C ,  (/) ) >. } )  Fn  p
) )
76imbi2d 330 . 2  |-  ( C  =  if ( C  e.  _V ,  C ,  (/) )  ->  (
( ( p  =  suc  n  /\  f  Fn  n )  ->  G  Fn  p )  <->  ( (
p  =  suc  n  /\  f  Fn  n
)  ->  ( f  u.  { <. n ,  if ( C  e.  _V ,  C ,  (/) ) >. } )  Fn  p
) ) )
8 eqid 2622 . . 3  |-  ( f  u.  { <. n ,  if ( C  e. 
_V ,  C ,  (/) ) >. } )  =  ( f  u.  { <. n ,  if ( C  e.  _V ,  C ,  (/) ) >. } )
9 0ex 4790 . . . 4  |-  (/)  e.  _V
109elimel 4150 . . 3  |-  if ( C  e.  _V ,  C ,  (/) )  e. 
_V
118, 10bnj927 30839 . 2  |-  ( ( p  =  suc  n  /\  f  Fn  n
)  ->  ( f  u.  { <. n ,  if ( C  e.  _V ,  C ,  (/) ) >. } )  Fn  p
)
127, 11dedth 4139 1  |-  ( C  e.  _V  ->  (
( p  =  suc  n  /\  f  Fn  n
)  ->  G  Fn  p ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    /\ wa 384    = wceq 1483    e. wcel 1990   _Vcvv 3200    u. cun 3572   (/)c0 3915   ifcif 4086   {csn 4177   <.cop 4183   suc csuc 5725    Fn wfn 5883
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-sep 4781  ax-nul 4789  ax-pr 4906  ax-reg 8497
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-ral 2917  df-rex 2918  df-rab 2921  df-v 3202  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-nul 3916  df-if 4087  df-sn 4178  df-pr 4180  df-op 4184  df-br 4654  df-opab 4713  df-id 5024  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-suc 5729  df-fun 5890  df-fn 5891
This theorem is referenced by:  bnj945  30844  bnj910  31018
  Copyright terms: Public domain W3C validator