| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > boxriin | Structured version Visualization version Unicode version | ||
| Description: A rectangular subset of a rectangular set can be recovered as the relative intersection of single-axis restrictions. (Contributed by Stefan O'Rear, 22-Feb-2015.) |
| Ref | Expression |
|---|---|
| boxriin |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | simprl 794 |
. . . . 5
| |
| 2 | ssel 3597 |
. . . . . . . 8
| |
| 3 | 2 | ral2imi 2947 |
. . . . . . 7
|
| 4 | 3 | adantr 481 |
. . . . . 6
|
| 5 | 4 | impr 649 |
. . . . 5
|
| 6 | eleq2 2690 |
. . . . . . . . . . . 12
| |
| 7 | eleq2 2690 |
. . . . . . . . . . . 12
| |
| 8 | simplr 792 |
. . . . . . . . . . . 12
| |
| 9 | ssel2 3598 |
. . . . . . . . . . . . 13
| |
| 10 | 9 | adantr 481 |
. . . . . . . . . . . 12
|
| 11 | 6, 7, 8, 10 | ifbothda 4123 |
. . . . . . . . . . 11
|
| 12 | 11 | ex 450 |
. . . . . . . . . 10
|
| 13 | 12 | ral2imi 2947 |
. . . . . . . . 9
|
| 14 | 13 | adantr 481 |
. . . . . . . 8
|
| 15 | 14 | impr 649 |
. . . . . . 7
|
| 16 | 1, 15 | jca 554 |
. . . . . 6
|
| 17 | 16 | ralrimivw 2967 |
. . . . 5
|
| 18 | 1, 5, 17 | jca31 557 |
. . . 4
|
| 19 | simprll 802 |
. . . . 5
| |
| 20 | simpr 477 |
. . . . . . . 8
| |
| 21 | 20 | ralimi 2952 |
. . . . . . 7
|
| 22 | ralcom 3098 |
. . . . . . . 8
| |
| 23 | iftrue 4092 |
. . . . . . . . . . . 12
| |
| 24 | 23 | equcoms 1947 |
. . . . . . . . . . 11
|
| 25 | 24 | eleq2d 2687 |
. . . . . . . . . 10
|
| 26 | 25 | rspcva 3307 |
. . . . . . . . 9
|
| 27 | 26 | ralimiaa 2951 |
. . . . . . . 8
|
| 28 | 22, 27 | sylbi 207 |
. . . . . . 7
|
| 29 | 21, 28 | syl 17 |
. . . . . 6
|
| 30 | 29 | ad2antll 765 |
. . . . 5
|
| 31 | 19, 30 | jca 554 |
. . . 4
|
| 32 | 18, 31 | impbida 877 |
. . 3
|
| 33 | vex 3203 |
. . . 4
| |
| 34 | 33 | elixp 7915 |
. . 3
|
| 35 | elin 3796 |
. . . 4
| |
| 36 | 33 | elixp 7915 |
. . . . 5
|
| 37 | eliin 4525 |
. . . . . . 7
| |
| 38 | 33, 37 | ax-mp 5 |
. . . . . 6
|
| 39 | 33 | elixp 7915 |
. . . . . . 7
|
| 40 | 39 | ralbii 2980 |
. . . . . 6
|
| 41 | 38, 40 | bitri 264 |
. . . . 5
|
| 42 | 36, 41 | anbi12i 733 |
. . . 4
|
| 43 | 35, 42 | bitri 264 |
. . 3
|
| 44 | 32, 34, 43 | 3bitr4g 303 |
. 2
|
| 45 | 44 | eqrdv 2620 |
1
|
| Colors of variables: wff setvar class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1722 ax-4 1737 ax-5 1839 ax-6 1888 ax-7 1935 ax-9 1999 ax-10 2019 ax-11 2034 ax-12 2047 ax-13 2246 ax-ext 2602 |
| This theorem depends on definitions: df-bi 197 df-or 385 df-an 386 df-3an 1039 df-tru 1486 df-ex 1705 df-nf 1710 df-sb 1881 df-clab 2609 df-cleq 2615 df-clel 2618 df-nfc 2753 df-ral 2917 df-rex 2918 df-rab 2921 df-v 3202 df-dif 3577 df-un 3579 df-in 3581 df-ss 3588 df-nul 3916 df-if 4087 df-sn 4178 df-pr 4180 df-op 4184 df-uni 4437 df-iin 4523 df-br 4654 df-opab 4713 df-rel 5121 df-cnv 5122 df-co 5123 df-dm 5124 df-iota 5851 df-fun 5890 df-fn 5891 df-fv 5896 df-ixp 7909 |
| This theorem is referenced by: ptcld 21416 kelac1 37633 |
| Copyright terms: Public domain | W3C validator |