MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ptcld Structured version   Visualization version   Unicode version

Theorem ptcld 21416
Description: A closed box in the product topology. (Contributed by Stefan O'Rear, 22-Feb-2015.)
Hypotheses
Ref Expression
ptcld.a  |-  ( ph  ->  A  e.  V )
ptcld.f  |-  ( ph  ->  F : A --> Top )
ptcld.c  |-  ( (
ph  /\  k  e.  A )  ->  C  e.  ( Clsd `  ( F `  k )
) )
Assertion
Ref Expression
ptcld  |-  ( ph  -> 
X_ k  e.  A  C  e.  ( Clsd `  ( Xt_ `  F
) ) )
Distinct variable groups:    ph, k    A, k    k, F    k, V
Allowed substitution hint:    C( k)

Proof of Theorem ptcld
Dummy variable  x is distinct from all other variables.
StepHypRef Expression
1 ptcld.c . . . . 5  |-  ( (
ph  /\  k  e.  A )  ->  C  e.  ( Clsd `  ( F `  k )
) )
2 eqid 2622 . . . . . 6  |-  U. ( F `  k )  =  U. ( F `  k )
32cldss 20833 . . . . 5  |-  ( C  e.  ( Clsd `  ( F `  k )
)  ->  C  C_  U. ( F `  k )
)
41, 3syl 17 . . . 4  |-  ( (
ph  /\  k  e.  A )  ->  C  C_ 
U. ( F `  k ) )
54ralrimiva 2966 . . 3  |-  ( ph  ->  A. k  e.  A  C  C_  U. ( F `
 k ) )
6 boxriin 7950 . . 3  |-  ( A. k  e.  A  C  C_ 
U. ( F `  k )  ->  X_ k  e.  A  C  =  ( X_ k  e.  A  U. ( F `  k
)  i^i  |^|_ x  e.  A  X_ k  e.  A  if ( k  =  x ,  C ,  U. ( F `  k ) ) ) )
75, 6syl 17 . 2  |-  ( ph  -> 
X_ k  e.  A  C  =  ( X_ k  e.  A  U. ( F `  k )  i^i  |^|_ x  e.  A  X_ k  e.  A  if ( k  =  x ,  C ,  U. ( F `  k ) ) ) )
8 ptcld.a . . . . 5  |-  ( ph  ->  A  e.  V )
9 ptcld.f . . . . 5  |-  ( ph  ->  F : A --> Top )
10 eqid 2622 . . . . . 6  |-  ( Xt_ `  F )  =  (
Xt_ `  F )
1110ptuni 21397 . . . . 5  |-  ( ( A  e.  V  /\  F : A --> Top )  -> 
X_ k  e.  A  U. ( F `  k
)  =  U. ( Xt_ `  F ) )
128, 9, 11syl2anc 693 . . . 4  |-  ( ph  -> 
X_ k  e.  A  U. ( F `  k
)  =  U. ( Xt_ `  F ) )
1312ineq1d 3813 . . 3  |-  ( ph  ->  ( X_ k  e.  A  U. ( F `
 k )  i^i  |^|_ x  e.  A  X_ k  e.  A  if ( k  =  x ,  C ,  U. ( F `  k ) ) )  =  ( U. ( Xt_ `  F
)  i^i  |^|_ x  e.  A  X_ k  e.  A  if ( k  =  x ,  C ,  U. ( F `  k ) ) ) )
14 pttop 21385 . . . . 5  |-  ( ( A  e.  V  /\  F : A --> Top )  ->  ( Xt_ `  F
)  e.  Top )
158, 9, 14syl2anc 693 . . . 4  |-  ( ph  ->  ( Xt_ `  F
)  e.  Top )
16 sseq1 3626 . . . . . . . . . . 11  |-  ( C  =  if ( k  =  x ,  C ,  U. ( F `  k ) )  -> 
( C  C_  U. ( F `  k )  <->  if ( k  =  x ,  C ,  U. ( F `  k ) )  C_  U. ( F `  k )
) )
17 sseq1 3626 . . . . . . . . . . 11  |-  ( U. ( F `  k )  =  if ( k  =  x ,  C ,  U. ( F `  k ) )  -> 
( U. ( F `
 k )  C_  U. ( F `  k
)  <->  if ( k  =  x ,  C ,  U. ( F `  k
) )  C_  U. ( F `  k )
) )
18 simpl 473 . . . . . . . . . . 11  |-  ( ( C  C_  U. ( F `  k )  /\  k  =  x
)  ->  C  C_  U. ( F `  k )
)
19 ssid 3624 . . . . . . . . . . . 12  |-  U. ( F `  k )  C_ 
U. ( F `  k )
2019a1i 11 . . . . . . . . . . 11  |-  ( ( C  C_  U. ( F `  k )  /\  -.  k  =  x )  ->  U. ( F `  k )  C_ 
U. ( F `  k ) )
2116, 17, 18, 20ifbothda 4123 . . . . . . . . . 10  |-  ( C 
C_  U. ( F `  k )  ->  if ( k  =  x ,  C ,  U. ( F `  k ) )  C_  U. ( F `  k )
)
2221ralimi 2952 . . . . . . . . 9  |-  ( A. k  e.  A  C  C_ 
U. ( F `  k )  ->  A. k  e.  A  if (
k  =  x ,  C ,  U. ( F `  k )
)  C_  U. ( F `  k )
)
23 ss2ixp 7921 . . . . . . . . 9  |-  ( A. k  e.  A  if ( k  =  x ,  C ,  U. ( F `  k ) )  C_  U. ( F `  k )  -> 
X_ k  e.  A  if ( k  =  x ,  C ,  U. ( F `  k ) )  C_  X_ k  e.  A  U. ( F `
 k ) )
245, 22, 233syl 18 . . . . . . . 8  |-  ( ph  -> 
X_ k  e.  A  if ( k  =  x ,  C ,  U. ( F `  k ) )  C_  X_ k  e.  A  U. ( F `
 k ) )
2524adantr 481 . . . . . . 7  |-  ( (
ph  /\  x  e.  A )  ->  X_ k  e.  A  if (
k  =  x ,  C ,  U. ( F `  k )
)  C_  X_ k  e.  A  U. ( F `
 k ) )
2612adantr 481 . . . . . . 7  |-  ( (
ph  /\  x  e.  A )  ->  X_ k  e.  A  U. ( F `  k )  =  U. ( Xt_ `  F
) )
2725, 26sseqtrd 3641 . . . . . 6  |-  ( (
ph  /\  x  e.  A )  ->  X_ k  e.  A  if (
k  =  x ,  C ,  U. ( F `  k )
)  C_  U. ( Xt_ `  F ) )
2812eqcomd 2628 . . . . . . . . . 10  |-  ( ph  ->  U. ( Xt_ `  F
)  =  X_ k  e.  A  U. ( F `  k )
)
2928difeq1d 3727 . . . . . . . . 9  |-  ( ph  ->  ( U. ( Xt_ `  F )  \  X_ k  e.  A  if (
k  =  x ,  C ,  U. ( F `  k )
) )  =  (
X_ k  e.  A  U. ( F `  k
)  \  X_ k  e.  A  if ( k  =  x ,  C ,  U. ( F `  k ) ) ) )
3029adantr 481 . . . . . . . 8  |-  ( (
ph  /\  x  e.  A )  ->  ( U. ( Xt_ `  F
)  \  X_ k  e.  A  if ( k  =  x ,  C ,  U. ( F `  k ) ) )  =  ( X_ k  e.  A  U. ( F `  k )  \  X_ k  e.  A  if ( k  =  x ,  C ,  U. ( F `  k ) ) ) )
31 simpr 477 . . . . . . . . 9  |-  ( (
ph  /\  x  e.  A )  ->  x  e.  A )
325adantr 481 . . . . . . . . 9  |-  ( (
ph  /\  x  e.  A )  ->  A. k  e.  A  C  C_  U. ( F `  k )
)
33 boxcutc 7951 . . . . . . . . 9  |-  ( ( x  e.  A  /\  A. k  e.  A  C  C_ 
U. ( F `  k ) )  -> 
( X_ k  e.  A  U. ( F `  k
)  \  X_ k  e.  A  if ( k  =  x ,  C ,  U. ( F `  k ) ) )  =  X_ k  e.  A  if ( k  =  x ,  ( U. ( F `  k )  \  C ) ,  U. ( F `  k ) ) )
3431, 32, 33syl2anc 693 . . . . . . . 8  |-  ( (
ph  /\  x  e.  A )  ->  ( X_ k  e.  A  U. ( F `  k ) 
\  X_ k  e.  A  if ( k  =  x ,  C ,  U. ( F `  k ) ) )  =  X_ k  e.  A  if ( k  =  x ,  ( U. ( F `  k )  \  C ) ,  U. ( F `  k ) ) )
35 ixpeq2 7922 . . . . . . . . . 10  |-  ( A. k  e.  A  if ( k  =  x ,  ( U. ( F `  k )  \  C ) ,  U. ( F `  k ) )  =  if ( k  =  x ,  ( U. ( F `
 x )  \  [_ x  /  k ]_ C ) ,  U. ( F `  k ) )  ->  X_ k  e.  A  if ( k  =  x ,  ( U. ( F `  k )  \  C
) ,  U. ( F `  k )
)  =  X_ k  e.  A  if (
k  =  x ,  ( U. ( F `
 x )  \  [_ x  /  k ]_ C ) ,  U. ( F `  k ) ) )
36 fveq2 6191 . . . . . . . . . . . . . 14  |-  ( k  =  x  ->  ( F `  k )  =  ( F `  x ) )
3736unieqd 4446 . . . . . . . . . . . . 13  |-  ( k  =  x  ->  U. ( F `  k )  =  U. ( F `  x ) )
38 csbeq1a 3542 . . . . . . . . . . . . 13  |-  ( k  =  x  ->  C  =  [_ x  /  k ]_ C )
3937, 38difeq12d 3729 . . . . . . . . . . . 12  |-  ( k  =  x  ->  ( U. ( F `  k
)  \  C )  =  ( U. ( F `  x )  \  [_ x  /  k ]_ C ) )
4039adantl 482 . . . . . . . . . . 11  |-  ( ( k  e.  A  /\  k  =  x )  ->  ( U. ( F `
 k )  \  C )  =  ( U. ( F `  x )  \  [_ x  /  k ]_ C
) )
4140ifeq1da 4116 . . . . . . . . . 10  |-  ( k  e.  A  ->  if ( k  =  x ,  ( U. ( F `  k )  \  C ) ,  U. ( F `  k ) )  =  if ( k  =  x ,  ( U. ( F `
 x )  \  [_ x  /  k ]_ C ) ,  U. ( F `  k ) ) )
4235, 41mprg 2926 . . . . . . . . 9  |-  X_ k  e.  A  if (
k  =  x ,  ( U. ( F `
 k )  \  C ) ,  U. ( F `  k ) )  =  X_ k  e.  A  if (
k  =  x ,  ( U. ( F `
 x )  \  [_ x  /  k ]_ C ) ,  U. ( F `  k ) )
4342a1i 11 . . . . . . . 8  |-  ( (
ph  /\  x  e.  A )  ->  X_ k  e.  A  if (
k  =  x ,  ( U. ( F `
 k )  \  C ) ,  U. ( F `  k ) )  =  X_ k  e.  A  if (
k  =  x ,  ( U. ( F `
 x )  \  [_ x  /  k ]_ C ) ,  U. ( F `  k ) ) )
4430, 34, 433eqtrd 2660 . . . . . . 7  |-  ( (
ph  /\  x  e.  A )  ->  ( U. ( Xt_ `  F
)  \  X_ k  e.  A  if ( k  =  x ,  C ,  U. ( F `  k ) ) )  =  X_ k  e.  A  if ( k  =  x ,  ( U. ( F `  x )  \  [_ x  /  k ]_ C ) ,  U. ( F `  k ) ) )
458adantr 481 . . . . . . . 8  |-  ( (
ph  /\  x  e.  A )  ->  A  e.  V )
469adantr 481 . . . . . . . 8  |-  ( (
ph  /\  x  e.  A )  ->  F : A --> Top )
471ralrimiva 2966 . . . . . . . . . . 11  |-  ( ph  ->  A. k  e.  A  C  e.  ( Clsd `  ( F `  k
) ) )
48 nfv 1843 . . . . . . . . . . . 12  |-  F/ x  C  e.  ( Clsd `  ( F `  k
) )
49 nfcsb1v 3549 . . . . . . . . . . . . 13  |-  F/_ k [_ x  /  k ]_ C
5049nfel1 2779 . . . . . . . . . . . 12  |-  F/ k
[_ x  /  k ]_ C  e.  ( Clsd `  ( F `  x ) )
5136fveq2d 6195 . . . . . . . . . . . . 13  |-  ( k  =  x  ->  ( Clsd `  ( F `  k ) )  =  ( Clsd `  ( F `  x )
) )
5238, 51eleq12d 2695 . . . . . . . . . . . 12  |-  ( k  =  x  ->  ( C  e.  ( Clsd `  ( F `  k
) )  <->  [_ x  / 
k ]_ C  e.  (
Clsd `  ( F `  x ) ) ) )
5348, 50, 52cbvral 3167 . . . . . . . . . . 11  |-  ( A. k  e.  A  C  e.  ( Clsd `  ( F `  k )
)  <->  A. x  e.  A  [_ x  /  k ]_ C  e.  ( Clsd `  ( F `  x
) ) )
5447, 53sylib 208 . . . . . . . . . 10  |-  ( ph  ->  A. x  e.  A  [_ x  /  k ]_ C  e.  ( Clsd `  ( F `  x
) ) )
5554r19.21bi 2932 . . . . . . . . 9  |-  ( (
ph  /\  x  e.  A )  ->  [_ x  /  k ]_ C  e.  ( Clsd `  ( F `  x )
) )
56 eqid 2622 . . . . . . . . . 10  |-  U. ( F `  x )  =  U. ( F `  x )
5756cldopn 20835 . . . . . . . . 9  |-  ( [_ x  /  k ]_ C  e.  ( Clsd `  ( F `  x )
)  ->  ( U. ( F `  x ) 
\  [_ x  /  k ]_ C )  e.  ( F `  x ) )
5855, 57syl 17 . . . . . . . 8  |-  ( (
ph  /\  x  e.  A )  ->  ( U. ( F `  x
)  \  [_ x  / 
k ]_ C )  e.  ( F `  x
) )
5945, 46, 58ptopn2 21387 . . . . . . 7  |-  ( (
ph  /\  x  e.  A )  ->  X_ k  e.  A  if (
k  =  x ,  ( U. ( F `
 x )  \  [_ x  /  k ]_ C ) ,  U. ( F `  k ) )  e.  ( Xt_ `  F ) )
6044, 59eqeltrd 2701 . . . . . 6  |-  ( (
ph  /\  x  e.  A )  ->  ( U. ( Xt_ `  F
)  \  X_ k  e.  A  if ( k  =  x ,  C ,  U. ( F `  k ) ) )  e.  ( Xt_ `  F
) )
61 eqid 2622 . . . . . . . . 9  |-  U. ( Xt_ `  F )  = 
U. ( Xt_ `  F
)
6261iscld 20831 . . . . . . . 8  |-  ( (
Xt_ `  F )  e.  Top  ->  ( X_ k  e.  A  if ( k  =  x ,  C ,  U. ( F `  k ) )  e.  ( Clsd `  ( Xt_ `  F
) )  <->  ( X_ k  e.  A  if ( k  =  x ,  C ,  U. ( F `  k ) )  C_  U. ( Xt_ `  F )  /\  ( U. ( Xt_ `  F
)  \  X_ k  e.  A  if ( k  =  x ,  C ,  U. ( F `  k ) ) )  e.  ( Xt_ `  F
) ) ) )
6315, 62syl 17 . . . . . . 7  |-  ( ph  ->  ( X_ k  e.  A  if ( k  =  x ,  C ,  U. ( F `  k ) )  e.  ( Clsd `  ( Xt_ `  F ) )  <-> 
( X_ k  e.  A  if ( k  =  x ,  C ,  U. ( F `  k ) )  C_  U. ( Xt_ `  F )  /\  ( U. ( Xt_ `  F
)  \  X_ k  e.  A  if ( k  =  x ,  C ,  U. ( F `  k ) ) )  e.  ( Xt_ `  F
) ) ) )
6463adantr 481 . . . . . 6  |-  ( (
ph  /\  x  e.  A )  ->  ( X_ k  e.  A  if ( k  =  x ,  C ,  U. ( F `  k ) )  e.  ( Clsd `  ( Xt_ `  F
) )  <->  ( X_ k  e.  A  if ( k  =  x ,  C ,  U. ( F `  k ) )  C_  U. ( Xt_ `  F )  /\  ( U. ( Xt_ `  F
)  \  X_ k  e.  A  if ( k  =  x ,  C ,  U. ( F `  k ) ) )  e.  ( Xt_ `  F
) ) ) )
6527, 60, 64mpbir2and 957 . . . . 5  |-  ( (
ph  /\  x  e.  A )  ->  X_ k  e.  A  if (
k  =  x ,  C ,  U. ( F `  k )
)  e.  ( Clsd `  ( Xt_ `  F
) ) )
6665ralrimiva 2966 . . . 4  |-  ( ph  ->  A. x  e.  A  X_ k  e.  A  if ( k  =  x ,  C ,  U. ( F `  k ) )  e.  ( Clsd `  ( Xt_ `  F
) ) )
6761riincld 20848 . . . 4  |-  ( ( ( Xt_ `  F
)  e.  Top  /\  A. x  e.  A  X_ k  e.  A  if ( k  =  x ,  C ,  U. ( F `  k ) )  e.  ( Clsd `  ( Xt_ `  F
) ) )  -> 
( U. ( Xt_ `  F )  i^i  |^|_ x  e.  A  X_ k  e.  A  if (
k  =  x ,  C ,  U. ( F `  k )
) )  e.  (
Clsd `  ( Xt_ `  F ) ) )
6815, 66, 67syl2anc 693 . . 3  |-  ( ph  ->  ( U. ( Xt_ `  F )  i^i  |^|_ x  e.  A  X_ k  e.  A  if (
k  =  x ,  C ,  U. ( F `  k )
) )  e.  (
Clsd `  ( Xt_ `  F ) ) )
6913, 68eqeltrd 2701 . 2  |-  ( ph  ->  ( X_ k  e.  A  U. ( F `
 k )  i^i  |^|_ x  e.  A  X_ k  e.  A  if ( k  =  x ,  C ,  U. ( F `  k ) ) )  e.  (
Clsd `  ( Xt_ `  F ) ) )
707, 69eqeltrd 2701 1  |-  ( ph  -> 
X_ k  e.  A  C  e.  ( Clsd `  ( Xt_ `  F
) ) )
Colors of variables: wff setvar class
Syntax hints:   -. wn 3    -> wi 4    <-> wb 196    /\ wa 384    = wceq 1483    e. wcel 1990   A.wral 2912   [_csb 3533    \ cdif 3571    i^i cin 3573    C_ wss 3574   ifcif 4086   U.cuni 4436   |^|_ciin 4521   -->wf 5884   ` cfv 5888   X_cixp 7908   Xt_cpt 16099   Topctop 20698   Clsdccld 20820
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-ral 2917  df-rex 2918  df-reu 2919  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-int 4476  df-iun 4522  df-iin 4523  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-pred 5680  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-om 7066  df-wrecs 7407  df-recs 7468  df-rdg 7506  df-1o 7560  df-oadd 7564  df-er 7742  df-ixp 7909  df-en 7956  df-fin 7959  df-fi 8317  df-topgen 16104  df-pt 16105  df-top 20699  df-bases 20750  df-cld 20823
This theorem is referenced by:  ptcldmpt  21417
  Copyright terms: Public domain W3C validator