Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  brabgaf Structured version   Visualization version   Unicode version

Theorem brabgaf 29420
Description: The law of concretion for a binary relation. (Contributed by Mario Carneiro, 19-Dec-2013.) (Revised by Thierry Arnoux, 17-May-2020.)
Hypotheses
Ref Expression
brabgaf.0  |-  F/ x ps
brabgaf.1  |-  ( ( x  =  A  /\  y  =  B )  ->  ( ph  <->  ps )
)
brabgaf.2  |-  R  =  { <. x ,  y
>.  |  ph }
Assertion
Ref Expression
brabgaf  |-  ( ( A  e.  V  /\  B  e.  W )  ->  ( A R B  <->  ps ) )
Distinct variable groups:    x, y, A    x, B, y    ps, y
Allowed substitution hints:    ph( x, y)    ps( x)    R( x, y)    V( x, y)    W( x, y)

Proof of Theorem brabgaf
StepHypRef Expression
1 df-br 4654 . . 3  |-  ( A R B  <->  <. A ,  B >.  e.  R )
2 brabgaf.2 . . . 4  |-  R  =  { <. x ,  y
>.  |  ph }
32eleq2i 2693 . . 3  |-  ( <. A ,  B >.  e.  R  <->  <. A ,  B >.  e.  { <. x ,  y >.  |  ph } )
41, 3bitri 264 . 2  |-  ( A R B  <->  <. A ,  B >.  e.  { <. x ,  y >.  |  ph } )
5 elopab 4983 . . 3  |-  ( <. A ,  B >.  e. 
{ <. x ,  y
>.  |  ph }  <->  E. x E. y ( <. A ,  B >.  =  <. x ,  y >.  /\  ph ) )
6 elisset 3215 . . . 4  |-  ( A  e.  V  ->  E. x  x  =  A )
7 elisset 3215 . . . 4  |-  ( B  e.  W  ->  E. y 
y  =  B )
8 eeanv 2182 . . . . 5  |-  ( E. x E. y ( x  =  A  /\  y  =  B )  <->  ( E. x  x  =  A  /\  E. y 
y  =  B ) )
9 nfe1 2027 . . . . . . 7  |-  F/ x E. x E. y (
<. A ,  B >.  = 
<. x ,  y >.  /\  ph )
10 brabgaf.0 . . . . . . 7  |-  F/ x ps
119, 10nfbi 1833 . . . . . 6  |-  F/ x
( E. x E. y ( <. A ,  B >.  =  <. x ,  y >.  /\  ph ) 
<->  ps )
12 nfe1 2027 . . . . . . . . 9  |-  F/ y E. y ( <. A ,  B >.  = 
<. x ,  y >.  /\  ph )
1312nfex 2154 . . . . . . . 8  |-  F/ y E. x E. y
( <. A ,  B >.  =  <. x ,  y
>.  /\  ph )
14 nfv 1843 . . . . . . . 8  |-  F/ y ps
1513, 14nfbi 1833 . . . . . . 7  |-  F/ y ( E. x E. y ( <. A ,  B >.  =  <. x ,  y >.  /\  ph ) 
<->  ps )
16 opeq12 4404 . . . . . . . . 9  |-  ( ( x  =  A  /\  y  =  B )  -> 
<. x ,  y >.  =  <. A ,  B >. )
17 copsexg 4956 . . . . . . . . . 10  |-  ( <. A ,  B >.  = 
<. x ,  y >.  ->  ( ph  <->  E. x E. y ( <. A ,  B >.  =  <. x ,  y >.  /\  ph ) ) )
1817eqcoms 2630 . . . . . . . . 9  |-  ( <.
x ,  y >.  =  <. A ,  B >.  ->  ( ph  <->  E. x E. y ( <. A ,  B >.  =  <. x ,  y >.  /\  ph ) ) )
1916, 18syl 17 . . . . . . . 8  |-  ( ( x  =  A  /\  y  =  B )  ->  ( ph  <->  E. x E. y ( <. A ,  B >.  =  <. x ,  y >.  /\  ph ) ) )
20 brabgaf.1 . . . . . . . 8  |-  ( ( x  =  A  /\  y  =  B )  ->  ( ph  <->  ps )
)
2119, 20bitr3d 270 . . . . . . 7  |-  ( ( x  =  A  /\  y  =  B )  ->  ( E. x E. y ( <. A ,  B >.  =  <. x ,  y >.  /\  ph ) 
<->  ps ) )
2215, 21exlimi 2086 . . . . . 6  |-  ( E. y ( x  =  A  /\  y  =  B )  ->  ( E. x E. y (
<. A ,  B >.  = 
<. x ,  y >.  /\  ph )  <->  ps )
)
2311, 22exlimi 2086 . . . . 5  |-  ( E. x E. y ( x  =  A  /\  y  =  B )  ->  ( E. x E. y ( <. A ,  B >.  =  <. x ,  y >.  /\  ph ) 
<->  ps ) )
248, 23sylbir 225 . . . 4  |-  ( ( E. x  x  =  A  /\  E. y 
y  =  B )  ->  ( E. x E. y ( <. A ,  B >.  =  <. x ,  y >.  /\  ph ) 
<->  ps ) )
256, 7, 24syl2an 494 . . 3  |-  ( ( A  e.  V  /\  B  e.  W )  ->  ( E. x E. y ( <. A ,  B >.  =  <. x ,  y >.  /\  ph ) 
<->  ps ) )
265, 25syl5bb 272 . 2  |-  ( ( A  e.  V  /\  B  e.  W )  ->  ( <. A ,  B >.  e.  { <. x ,  y >.  |  ph } 
<->  ps ) )
274, 26syl5bb 272 1  |-  ( ( A  e.  V  /\  B  e.  W )  ->  ( A R B  <->  ps ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 196    /\ wa 384    = wceq 1483   E.wex 1704   F/wnf 1708    e. wcel 1990   <.cop 4183   class class class wbr 4653   {copab 4712
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-sep 4781  ax-nul 4789  ax-pr 4906
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-rab 2921  df-v 3202  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-nul 3916  df-if 4087  df-sn 4178  df-pr 4180  df-op 4184  df-br 4654  df-opab 4713
This theorem is referenced by:  fmptcof2  29457
  Copyright terms: Public domain W3C validator