| Mathbox for Thierry Arnoux |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > brabgaf | Structured version Visualization version Unicode version | ||
| Description: The law of concretion for a binary relation. (Contributed by Mario Carneiro, 19-Dec-2013.) (Revised by Thierry Arnoux, 17-May-2020.) |
| Ref | Expression |
|---|---|
| brabgaf.0 |
|
| brabgaf.1 |
|
| brabgaf.2 |
|
| Ref | Expression |
|---|---|
| brabgaf |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-br 4654 |
. . 3
| |
| 2 | brabgaf.2 |
. . . 4
| |
| 3 | 2 | eleq2i 2693 |
. . 3
|
| 4 | 1, 3 | bitri 264 |
. 2
|
| 5 | elopab 4983 |
. . 3
| |
| 6 | elisset 3215 |
. . . 4
| |
| 7 | elisset 3215 |
. . . 4
| |
| 8 | eeanv 2182 |
. . . . 5
| |
| 9 | nfe1 2027 |
. . . . . . 7
| |
| 10 | brabgaf.0 |
. . . . . . 7
| |
| 11 | 9, 10 | nfbi 1833 |
. . . . . 6
|
| 12 | nfe1 2027 |
. . . . . . . . 9
| |
| 13 | 12 | nfex 2154 |
. . . . . . . 8
|
| 14 | nfv 1843 |
. . . . . . . 8
| |
| 15 | 13, 14 | nfbi 1833 |
. . . . . . 7
|
| 16 | opeq12 4404 |
. . . . . . . . 9
| |
| 17 | copsexg 4956 |
. . . . . . . . . 10
| |
| 18 | 17 | eqcoms 2630 |
. . . . . . . . 9
|
| 19 | 16, 18 | syl 17 |
. . . . . . . 8
|
| 20 | brabgaf.1 |
. . . . . . . 8
| |
| 21 | 19, 20 | bitr3d 270 |
. . . . . . 7
|
| 22 | 15, 21 | exlimi 2086 |
. . . . . 6
|
| 23 | 11, 22 | exlimi 2086 |
. . . . 5
|
| 24 | 8, 23 | sylbir 225 |
. . . 4
|
| 25 | 6, 7, 24 | syl2an 494 |
. . 3
|
| 26 | 5, 25 | syl5bb 272 |
. 2
|
| 27 | 4, 26 | syl5bb 272 |
1
|
| Colors of variables: wff setvar class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1722 ax-4 1737 ax-5 1839 ax-6 1888 ax-7 1935 ax-9 1999 ax-10 2019 ax-11 2034 ax-12 2047 ax-13 2246 ax-ext 2602 ax-sep 4781 ax-nul 4789 ax-pr 4906 |
| This theorem depends on definitions: df-bi 197 df-or 385 df-an 386 df-3an 1039 df-tru 1486 df-ex 1705 df-nf 1710 df-sb 1881 df-eu 2474 df-mo 2475 df-clab 2609 df-cleq 2615 df-clel 2618 df-nfc 2753 df-rab 2921 df-v 3202 df-dif 3577 df-un 3579 df-in 3581 df-ss 3588 df-nul 3916 df-if 4087 df-sn 4178 df-pr 4180 df-op 4184 df-br 4654 df-opab 4713 |
| This theorem is referenced by: fmptcof2 29457 |
| Copyright terms: Public domain | W3C validator |