Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  fmptcof2 Structured version   Visualization version   Unicode version

Theorem fmptcof2 29457
Description: Composition of two functions expressed as ordered-pair class abstractions. (Contributed by FL, 21-Jun-2012.) (Revised by Mario Carneiro, 24-Jul-2014.) (Revised by Thierry Arnoux, 10-May-2017.)
Hypotheses
Ref Expression
fmptcof2.x  |-  F/_ x S
fmptcof2.y  |-  F/_ y T
fmptcof2.1  |-  F/_ x A
fmptcof2.2  |-  F/_ x B
fmptcof2.3  |-  F/ x ph
fmptcof2.4  |-  ( ph  ->  A. x  e.  A  R  e.  B )
fmptcof2.5  |-  ( ph  ->  F  =  ( x  e.  A  |->  R ) )
fmptcof2.6  |-  ( ph  ->  G  =  ( y  e.  B  |->  S ) )
fmptcof2.7  |-  ( y  =  R  ->  S  =  T )
Assertion
Ref Expression
fmptcof2  |-  ( ph  ->  ( G  o.  F
)  =  ( x  e.  A  |->  T ) )
Distinct variable groups:    x, y    y, B    y, R
Allowed substitution hints:    ph( x, y)    A( x, y)    B( x)    R( x)    S( x, y)    T( x, y)    F( x, y)    G( x, y)

Proof of Theorem fmptcof2
Dummy variables  v  u  w  z are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 relco 5633 . 2  |-  Rel  ( G  o.  F )
2 funmpt 5926 . . 3  |-  Fun  (
x  e.  A  |->  T )
3 funrel 5905 . . 3  |-  ( Fun  ( x  e.  A  |->  T )  ->  Rel  ( x  e.  A  |->  T ) )
42, 3ax-mp 5 . 2  |-  Rel  (
x  e.  A  |->  T )
5 fmptcof2.3 . . . . . . . . . . . . 13  |-  F/ x ph
6 fmptcof2.1 . . . . . . . . . . . . 13  |-  F/_ x A
7 fmptcof2.2 . . . . . . . . . . . . 13  |-  F/_ x B
8 fmptcof2.4 . . . . . . . . . . . . . 14  |-  ( ph  ->  A. x  e.  A  R  e.  B )
98r19.21bi 2932 . . . . . . . . . . . . 13  |-  ( (
ph  /\  x  e.  A )  ->  R  e.  B )
10 eqid 2622 . . . . . . . . . . . . 13  |-  ( x  e.  A  |->  R )  =  ( x  e.  A  |->  R )
115, 6, 7, 9, 10fmptdF 29456 . . . . . . . . . . . 12  |-  ( ph  ->  ( x  e.  A  |->  R ) : A --> B )
12 fmptcof2.5 . . . . . . . . . . . . 13  |-  ( ph  ->  F  =  ( x  e.  A  |->  R ) )
1312feq1d 6030 . . . . . . . . . . . 12  |-  ( ph  ->  ( F : A --> B 
<->  ( x  e.  A  |->  R ) : A --> B ) )
1411, 13mpbird 247 . . . . . . . . . . 11  |-  ( ph  ->  F : A --> B )
15 ffun 6048 . . . . . . . . . . 11  |-  ( F : A --> B  ->  Fun  F )
1614, 15syl 17 . . . . . . . . . 10  |-  ( ph  ->  Fun  F )
17 funbrfv 6234 . . . . . . . . . . 11  |-  ( Fun 
F  ->  ( z F u  ->  ( F `
 z )  =  u ) )
1817imp 445 . . . . . . . . . 10  |-  ( ( Fun  F  /\  z F u )  -> 
( F `  z
)  =  u )
1916, 18sylan 488 . . . . . . . . 9  |-  ( (
ph  /\  z F u )  ->  ( F `  z )  =  u )
2019eqcomd 2628 . . . . . . . 8  |-  ( (
ph  /\  z F u )  ->  u  =  ( F `  z ) )
2120a1d 25 . . . . . . 7  |-  ( (
ph  /\  z F u )  ->  (
u G w  ->  u  =  ( F `  z ) ) )
2221expimpd 629 . . . . . 6  |-  ( ph  ->  ( ( z F u  /\  u G w )  ->  u  =  ( F `  z ) ) )
2322pm4.71rd 667 . . . . 5  |-  ( ph  ->  ( ( z F u  /\  u G w )  <->  ( u  =  ( F `  z )  /\  (
z F u  /\  u G w ) ) ) )
2423exbidv 1850 . . . 4  |-  ( ph  ->  ( E. u ( z F u  /\  u G w )  <->  E. u
( u  =  ( F `  z )  /\  ( z F u  /\  u G w ) ) ) )
25 fvex 6201 . . . . . 6  |-  ( F `
 z )  e. 
_V
26 breq2 4657 . . . . . . 7  |-  ( u  =  ( F `  z )  ->  (
z F u  <->  z F
( F `  z
) ) )
27 breq1 4656 . . . . . . 7  |-  ( u  =  ( F `  z )  ->  (
u G w  <->  ( F `  z ) G w ) )
2826, 27anbi12d 747 . . . . . 6  |-  ( u  =  ( F `  z )  ->  (
( z F u  /\  u G w )  <->  ( z F ( F `  z
)  /\  ( F `  z ) G w ) ) )
2925, 28ceqsexv 3242 . . . . 5  |-  ( E. u ( u  =  ( F `  z
)  /\  ( z F u  /\  u G w ) )  <-> 
( z F ( F `  z )  /\  ( F `  z ) G w ) )
30 funfvbrb 6330 . . . . . . . . 9  |-  ( Fun 
F  ->  ( z  e.  dom  F  <->  z F
( F `  z
) ) )
3116, 30syl 17 . . . . . . . 8  |-  ( ph  ->  ( z  e.  dom  F  <-> 
z F ( F `
 z ) ) )
32 fdm 6051 . . . . . . . . . 10  |-  ( F : A --> B  ->  dom  F  =  A )
3314, 32syl 17 . . . . . . . . 9  |-  ( ph  ->  dom  F  =  A )
3433eleq2d 2687 . . . . . . . 8  |-  ( ph  ->  ( z  e.  dom  F  <-> 
z  e.  A ) )
3531, 34bitr3d 270 . . . . . . 7  |-  ( ph  ->  ( z F ( F `  z )  <-> 
z  e.  A ) )
3612fveq1d 6193 . . . . . . . 8  |-  ( ph  ->  ( F `  z
)  =  ( ( x  e.  A  |->  R ) `  z ) )
37 fmptcof2.6 . . . . . . . 8  |-  ( ph  ->  G  =  ( y  e.  B  |->  S ) )
38 eqidd 2623 . . . . . . . 8  |-  ( ph  ->  w  =  w )
3936, 37, 38breq123d 4667 . . . . . . 7  |-  ( ph  ->  ( ( F `  z ) G w  <-> 
( ( x  e.  A  |->  R ) `  z ) ( y  e.  B  |->  S ) w ) )
4035, 39anbi12d 747 . . . . . 6  |-  ( ph  ->  ( ( z F ( F `  z
)  /\  ( F `  z ) G w )  <->  ( z  e.  A  /\  ( ( x  e.  A  |->  R ) `  z ) ( y  e.  B  |->  S ) w ) ) )
416nfcri 2758 . . . . . . . . . 10  |-  F/ x  z  e.  A
42 nffvmpt1 6199 . . . . . . . . . . . . 13  |-  F/_ x
( ( x  e.  A  |->  R ) `  z )
43 fmptcof2.x . . . . . . . . . . . . . 14  |-  F/_ x S
447, 43nfmpt 4746 . . . . . . . . . . . . 13  |-  F/_ x
( y  e.  B  |->  S )
45 nfcv 2764 . . . . . . . . . . . . 13  |-  F/_ x w
4642, 44, 45nfbr 4699 . . . . . . . . . . . 12  |-  F/ x
( ( x  e.  A  |->  R ) `  z ) ( y  e.  B  |->  S ) w
47 nfcsb1v 3549 . . . . . . . . . . . . 13  |-  F/_ x [_ z  /  x ]_ T
4847nfeq2 2780 . . . . . . . . . . . 12  |-  F/ x  w  =  [_ z  /  x ]_ T
4946, 48nfbi 1833 . . . . . . . . . . 11  |-  F/ x
( ( ( x  e.  A  |->  R ) `
 z ) ( y  e.  B  |->  S ) w  <->  w  =  [_ z  /  x ]_ T )
505, 49nfim 1825 . . . . . . . . . 10  |-  F/ x
( ph  ->  ( ( ( x  e.  A  |->  R ) `  z
) ( y  e.  B  |->  S ) w  <-> 
w  =  [_ z  /  x ]_ T ) )
5141, 50nfim 1825 . . . . . . . . 9  |-  F/ x
( z  e.  A  ->  ( ph  ->  (
( ( x  e.  A  |->  R ) `  z ) ( y  e.  B  |->  S ) w  <->  w  =  [_ z  /  x ]_ T ) ) )
52 eleq1 2689 . . . . . . . . . 10  |-  ( x  =  z  ->  (
x  e.  A  <->  z  e.  A ) )
53 fveq2 6191 . . . . . . . . . . . . 13  |-  ( x  =  z  ->  (
( x  e.  A  |->  R ) `  x
)  =  ( ( x  e.  A  |->  R ) `  z ) )
5453breq1d 4663 . . . . . . . . . . . 12  |-  ( x  =  z  ->  (
( ( x  e.  A  |->  R ) `  x ) ( y  e.  B  |->  S ) w  <->  ( ( x  e.  A  |->  R ) `
 z ) ( y  e.  B  |->  S ) w ) )
55 csbeq1a 3542 . . . . . . . . . . . . 13  |-  ( x  =  z  ->  T  =  [_ z  /  x ]_ T )
5655eqeq2d 2632 . . . . . . . . . . . 12  |-  ( x  =  z  ->  (
w  =  T  <->  w  =  [_ z  /  x ]_ T ) )
5754, 56bibi12d 335 . . . . . . . . . . 11  |-  ( x  =  z  ->  (
( ( ( x  e.  A  |->  R ) `
 x ) ( y  e.  B  |->  S ) w  <->  w  =  T )  <->  ( (
( x  e.  A  |->  R ) `  z
) ( y  e.  B  |->  S ) w  <-> 
w  =  [_ z  /  x ]_ T ) ) )
5857imbi2d 330 . . . . . . . . . 10  |-  ( x  =  z  ->  (
( ph  ->  ( ( ( x  e.  A  |->  R ) `  x
) ( y  e.  B  |->  S ) w  <-> 
w  =  T ) )  <->  ( ph  ->  ( ( ( x  e.  A  |->  R ) `  z ) ( y  e.  B  |->  S ) w  <->  w  =  [_ z  /  x ]_ T ) ) ) )
5952, 58imbi12d 334 . . . . . . . . 9  |-  ( x  =  z  ->  (
( x  e.  A  ->  ( ph  ->  (
( ( x  e.  A  |->  R ) `  x ) ( y  e.  B  |->  S ) w  <->  w  =  T
) ) )  <->  ( z  e.  A  ->  ( ph  ->  ( ( ( x  e.  A  |->  R ) `
 z ) ( y  e.  B  |->  S ) w  <->  w  =  [_ z  /  x ]_ T ) ) ) ) )
60 vex 3203 . . . . . . . . . . . 12  |-  w  e. 
_V
61 nfv 1843 . . . . . . . . . . . . . 14  |-  F/ y  R  e.  B
62 nfcv 2764 . . . . . . . . . . . . . . 15  |-  F/_ y
w
63 fmptcof2.y . . . . . . . . . . . . . . 15  |-  F/_ y T
6462, 63nfeq 2776 . . . . . . . . . . . . . 14  |-  F/ y  w  =  T
6561, 64nfan 1828 . . . . . . . . . . . . 13  |-  F/ y ( R  e.  B  /\  w  =  T
)
66 simpl 473 . . . . . . . . . . . . . . 15  |-  ( ( y  =  R  /\  u  =  w )  ->  y  =  R )
6766eleq1d 2686 . . . . . . . . . . . . . 14  |-  ( ( y  =  R  /\  u  =  w )  ->  ( y  e.  B  <->  R  e.  B ) )
68 simpr 477 . . . . . . . . . . . . . . 15  |-  ( ( y  =  R  /\  u  =  w )  ->  u  =  w )
69 fmptcof2.7 . . . . . . . . . . . . . . . 16  |-  ( y  =  R  ->  S  =  T )
7069adantr 481 . . . . . . . . . . . . . . 15  |-  ( ( y  =  R  /\  u  =  w )  ->  S  =  T )
7168, 70eqeq12d 2637 . . . . . . . . . . . . . 14  |-  ( ( y  =  R  /\  u  =  w )  ->  ( u  =  S  <-> 
w  =  T ) )
7267, 71anbi12d 747 . . . . . . . . . . . . 13  |-  ( ( y  =  R  /\  u  =  w )  ->  ( ( y  e.  B  /\  u  =  S )  <->  ( R  e.  B  /\  w  =  T ) ) )
73 df-mpt 4730 . . . . . . . . . . . . 13  |-  ( y  e.  B  |->  S )  =  { <. y ,  u >.  |  (
y  e.  B  /\  u  =  S ) }
7465, 72, 73brabgaf 29420 . . . . . . . . . . . 12  |-  ( ( R  e.  B  /\  w  e.  _V )  ->  ( R ( y  e.  B  |->  S ) w  <->  ( R  e.  B  /\  w  =  T ) ) )
759, 60, 74sylancl 694 . . . . . . . . . . 11  |-  ( (
ph  /\  x  e.  A )  ->  ( R ( y  e.  B  |->  S ) w  <-> 
( R  e.  B  /\  w  =  T
) ) )
76 simpr 477 . . . . . . . . . . . . 13  |-  ( (
ph  /\  x  e.  A )  ->  x  e.  A )
776fvmpt2f 6283 . . . . . . . . . . . . 13  |-  ( ( x  e.  A  /\  R  e.  B )  ->  ( ( x  e.  A  |->  R ) `  x )  =  R )
7876, 9, 77syl2anc 693 . . . . . . . . . . . 12  |-  ( (
ph  /\  x  e.  A )  ->  (
( x  e.  A  |->  R ) `  x
)  =  R )
7978breq1d 4663 . . . . . . . . . . 11  |-  ( (
ph  /\  x  e.  A )  ->  (
( ( x  e.  A  |->  R ) `  x ) ( y  e.  B  |->  S ) w  <->  R ( y  e.  B  |->  S ) w ) )
809biantrurd 529 . . . . . . . . . . 11  |-  ( (
ph  /\  x  e.  A )  ->  (
w  =  T  <->  ( R  e.  B  /\  w  =  T ) ) )
8175, 79, 803bitr4d 300 . . . . . . . . . 10  |-  ( (
ph  /\  x  e.  A )  ->  (
( ( x  e.  A  |->  R ) `  x ) ( y  e.  B  |->  S ) w  <->  w  =  T
) )
8281expcom 451 . . . . . . . . 9  |-  ( x  e.  A  ->  ( ph  ->  ( ( ( x  e.  A  |->  R ) `  x ) ( y  e.  B  |->  S ) w  <->  w  =  T ) ) )
8351, 59, 82chvar 2262 . . . . . . . 8  |-  ( z  e.  A  ->  ( ph  ->  ( ( ( x  e.  A  |->  R ) `  z ) ( y  e.  B  |->  S ) w  <->  w  =  [_ z  /  x ]_ T ) ) )
8483impcom 446 . . . . . . 7  |-  ( (
ph  /\  z  e.  A )  ->  (
( ( x  e.  A  |->  R ) `  z ) ( y  e.  B  |->  S ) w  <->  w  =  [_ z  /  x ]_ T ) )
8584pm5.32da 673 . . . . . 6  |-  ( ph  ->  ( ( z  e.  A  /\  ( ( x  e.  A  |->  R ) `  z ) ( y  e.  B  |->  S ) w )  <-> 
( z  e.  A  /\  w  =  [_ z  /  x ]_ T ) ) )
8640, 85bitrd 268 . . . . 5  |-  ( ph  ->  ( ( z F ( F `  z
)  /\  ( F `  z ) G w )  <->  ( z  e.  A  /\  w  = 
[_ z  /  x ]_ T ) ) )
8729, 86syl5bb 272 . . . 4  |-  ( ph  ->  ( E. u ( u  =  ( F `
 z )  /\  ( z F u  /\  u G w ) )  <->  ( z  e.  A  /\  w  =  [_ z  /  x ]_ T ) ) )
8824, 87bitrd 268 . . 3  |-  ( ph  ->  ( E. u ( z F u  /\  u G w )  <->  ( z  e.  A  /\  w  =  [_ z  /  x ]_ T ) ) )
89 vex 3203 . . . 4  |-  z  e. 
_V
9089, 60opelco 5293 . . 3  |-  ( <.
z ,  w >.  e.  ( G  o.  F
)  <->  E. u ( z F u  /\  u G w ) )
91 df-mpt 4730 . . . . 5  |-  ( x  e.  A  |->  T )  =  { <. x ,  v >.  |  ( x  e.  A  /\  v  =  T ) }
9291eleq2i 2693 . . . 4  |-  ( <.
z ,  w >.  e.  ( x  e.  A  |->  T )  <->  <. z ,  w >.  e.  { <. x ,  v >.  |  ( x  e.  A  /\  v  =  T ) } )
9347nfeq2 2780 . . . . . 6  |-  F/ x  v  =  [_ z  /  x ]_ T
9441, 93nfan 1828 . . . . 5  |-  F/ x
( z  e.  A  /\  v  =  [_ z  /  x ]_ T )
95 nfv 1843 . . . . 5  |-  F/ v ( z  e.  A  /\  w  =  [_ z  /  x ]_ T )
9655eqeq2d 2632 . . . . . 6  |-  ( x  =  z  ->  (
v  =  T  <->  v  =  [_ z  /  x ]_ T ) )
9752, 96anbi12d 747 . . . . 5  |-  ( x  =  z  ->  (
( x  e.  A  /\  v  =  T
)  <->  ( z  e.  A  /\  v  = 
[_ z  /  x ]_ T ) ) )
98 eqeq1 2626 . . . . . 6  |-  ( v  =  w  ->  (
v  =  [_ z  /  x ]_ T  <->  w  =  [_ z  /  x ]_ T ) )
9998anbi2d 740 . . . . 5  |-  ( v  =  w  ->  (
( z  e.  A  /\  v  =  [_ z  /  x ]_ T )  <-> 
( z  e.  A  /\  w  =  [_ z  /  x ]_ T ) ) )
10094, 95, 89, 60, 97, 99opelopabf 5000 . . . 4  |-  ( <.
z ,  w >.  e. 
{ <. x ,  v
>.  |  ( x  e.  A  /\  v  =  T ) }  <->  ( z  e.  A  /\  w  =  [_ z  /  x ]_ T ) )
10192, 100bitri 264 . . 3  |-  ( <.
z ,  w >.  e.  ( x  e.  A  |->  T )  <->  ( z  e.  A  /\  w  =  [_ z  /  x ]_ T ) )
10288, 90, 1013bitr4g 303 . 2  |-  ( ph  ->  ( <. z ,  w >.  e.  ( G  o.  F )  <->  <. z ,  w >.  e.  (
x  e.  A  |->  T ) ) )
1031, 4, 102eqrelrdv 5216 1  |-  ( ph  ->  ( G  o.  F
)  =  ( x  e.  A  |->  T ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 196    /\ wa 384    = wceq 1483   E.wex 1704   F/wnf 1708    e. wcel 1990   F/_wnfc 2751   A.wral 2912   _Vcvv 3200   [_csb 3533   <.cop 4183   class class class wbr 4653   {copab 4712    |-> cmpt 4729   dom cdm 5114    o. ccom 5118   Rel wrel 5119   Fun wfun 5882   -->wf 5884   ` cfv 5888
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-sep 4781  ax-nul 4789  ax-pr 4906
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3an 1039  df-tru 1486  df-fal 1489  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-ral 2917  df-rex 2918  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-nul 3916  df-if 4087  df-sn 4178  df-pr 4180  df-op 4184  df-uni 4437  df-br 4654  df-opab 4713  df-mpt 4730  df-id 5024  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-fv 5896
This theorem is referenced by:  esumf1o  30112
  Copyright terms: Public domain W3C validator