Users' Mathboxes Mathbox for Richard Penner < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  brco3f1o Structured version   Visualization version   Unicode version

Theorem brco3f1o 38331
Description: Conditions allowing the decomposition of a binary relation. (Contributed by RP, 8-Jun-2021.)
Hypotheses
Ref Expression
brco3f1o.c  |-  ( ph  ->  C : Y -1-1-onto-> Z )
brco3f1o.d  |-  ( ph  ->  D : X -1-1-onto-> Y )
brco3f1o.e  |-  ( ph  ->  E : W -1-1-onto-> X )
brco3f1o.r  |-  ( ph  ->  A ( C  o.  ( D  o.  E
) ) B )
Assertion
Ref Expression
brco3f1o  |-  ( ph  ->  ( ( `' C `  B ) C B  /\  ( `' D `  ( `' C `  B ) ) D ( `' C `  B )  /\  A E ( `' D `  ( `' C `  B ) ) ) )

Proof of Theorem brco3f1o
StepHypRef Expression
1 brco3f1o.e . . . 4  |-  ( ph  ->  E : W -1-1-onto-> X )
2 f1ocnv 6149 . . . 4  |-  ( E : W -1-1-onto-> X  ->  `' E : X -1-1-onto-> W )
3 f1ofn 6138 . . . 4  |-  ( `' E : X -1-1-onto-> W  ->  `' E  Fn  X
)
41, 2, 33syl 18 . . 3  |-  ( ph  ->  `' E  Fn  X
)
5 brco3f1o.d . . . 4  |-  ( ph  ->  D : X -1-1-onto-> Y )
6 f1ocnv 6149 . . . 4  |-  ( D : X -1-1-onto-> Y  ->  `' D : Y -1-1-onto-> X )
7 f1of 6137 . . . 4  |-  ( `' D : Y -1-1-onto-> X  ->  `' D : Y --> X )
85, 6, 73syl 18 . . 3  |-  ( ph  ->  `' D : Y --> X )
9 brco3f1o.c . . . 4  |-  ( ph  ->  C : Y -1-1-onto-> Z )
10 f1ocnv 6149 . . . 4  |-  ( C : Y -1-1-onto-> Z  ->  `' C : Z -1-1-onto-> Y )
11 f1of 6137 . . . 4  |-  ( `' C : Z -1-1-onto-> Y  ->  `' C : Z --> Y )
129, 10, 113syl 18 . . 3  |-  ( ph  ->  `' C : Z --> Y )
13 brco3f1o.r . . . 4  |-  ( ph  ->  A ( C  o.  ( D  o.  E
) ) B )
14 relco 5633 . . . . . 6  |-  Rel  (
( C  o.  D
)  o.  E )
1514relbrcnv 5506 . . . . 5  |-  ( B `' ( ( C  o.  D )  o.  E ) A  <->  A (
( C  o.  D
)  o.  E ) B )
16 cnvco 5308 . . . . . . 7  |-  `' ( ( C  o.  D
)  o.  E )  =  ( `' E  o.  `' ( C  o.  D ) )
17 cnvco 5308 . . . . . . . 8  |-  `' ( C  o.  D )  =  ( `' D  o.  `' C )
1817coeq2i 5282 . . . . . . 7  |-  ( `' E  o.  `' ( C  o.  D ) )  =  ( `' E  o.  ( `' D  o.  `' C
) )
1916, 18eqtri 2644 . . . . . 6  |-  `' ( ( C  o.  D
)  o.  E )  =  ( `' E  o.  ( `' D  o.  `' C ) )
2019breqi 4659 . . . . 5  |-  ( B `' ( ( C  o.  D )  o.  E ) A  <->  B ( `' E  o.  ( `' D  o.  `' C ) ) A )
21 coass 5654 . . . . . 6  |-  ( ( C  o.  D )  o.  E )  =  ( C  o.  ( D  o.  E )
)
2221breqi 4659 . . . . 5  |-  ( A ( ( C  o.  D )  o.  E
) B  <->  A ( C  o.  ( D  o.  E ) ) B )
2315, 20, 223bitr3ri 291 . . . 4  |-  ( A ( C  o.  ( D  o.  E )
) B  <->  B ( `' E  o.  ( `' D  o.  `' C ) ) A )
2413, 23sylib 208 . . 3  |-  ( ph  ->  B ( `' E  o.  ( `' D  o.  `' C ) ) A )
254, 8, 12, 24brcofffn 38329 . 2  |-  ( ph  ->  ( B `' C
( `' C `  B )  /\  ( `' C `  B ) `' D ( `' D `  ( `' C `  B ) )  /\  ( `' D `  ( `' C `  B ) ) `' E A ) )
26 f1orel 6140 . . . 4  |-  ( C : Y -1-1-onto-> Z  ->  Rel  C )
27 relbrcnvg 5504 . . . 4  |-  ( Rel 
C  ->  ( B `' C ( `' C `  B )  <->  ( `' C `  B ) C B ) )
289, 26, 273syl 18 . . 3  |-  ( ph  ->  ( B `' C
( `' C `  B )  <->  ( `' C `  B ) C B ) )
29 f1orel 6140 . . . 4  |-  ( D : X -1-1-onto-> Y  ->  Rel  D )
30 relbrcnvg 5504 . . . 4  |-  ( Rel 
D  ->  ( ( `' C `  B ) `' D ( `' D `  ( `' C `  B ) )  <->  ( `' D `  ( `' C `  B )
) D ( `' C `  B ) ) )
315, 29, 303syl 18 . . 3  |-  ( ph  ->  ( ( `' C `  B ) `' D
( `' D `  ( `' C `  B ) )  <->  ( `' D `  ( `' C `  B ) ) D ( `' C `  B ) ) )
32 f1orel 6140 . . . 4  |-  ( E : W -1-1-onto-> X  ->  Rel  E )
33 relbrcnvg 5504 . . . 4  |-  ( Rel 
E  ->  ( ( `' D `  ( `' C `  B ) ) `' E A  <-> 
A E ( `' D `  ( `' C `  B ) ) ) )
341, 32, 333syl 18 . . 3  |-  ( ph  ->  ( ( `' D `  ( `' C `  B ) ) `' E A  <->  A E
( `' D `  ( `' C `  B ) ) ) )
3528, 31, 343anbi123d 1399 . 2  |-  ( ph  ->  ( ( B `' C ( `' C `  B )  /\  ( `' C `  B ) `' D ( `' D `  ( `' C `  B ) )  /\  ( `' D `  ( `' C `  B ) ) `' E A )  <->  ( ( `' C `  B ) C B  /\  ( `' D `  ( `' C `  B ) ) D ( `' C `  B )  /\  A E ( `' D `  ( `' C `  B ) ) ) ) )
3625, 35mpbid 222 1  |-  ( ph  ->  ( ( `' C `  B ) C B  /\  ( `' D `  ( `' C `  B ) ) D ( `' C `  B )  /\  A E ( `' D `  ( `' C `  B ) ) ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 196    /\ w3a 1037   class class class wbr 4653   `'ccnv 5113    o. ccom 5118   Rel wrel 5119    Fn wfn 5883   -->wf 5884   -1-1-onto->wf1o 5887   ` cfv 5888
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-ral 2917  df-rex 2918  df-rab 2921  df-v 3202  df-sbc 3436  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-nul 3916  df-if 4087  df-sn 4178  df-pr 4180  df-op 4184  df-uni 4437  df-br 4654  df-opab 4713  df-id 5024  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator