| Mathbox for Thierry Arnoux |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > brfae | Structured version Visualization version Unicode version | ||
| Description: 'almost everywhere'
relation for two functions |
| Ref | Expression |
|---|---|
| brfae.0 |
|
| brfae.1 |
|
| brfae.2 |
|
| brfae.3 |
|
| brfae.4 |
|
| Ref | Expression |
|---|---|
| brfae |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | brfae.3 |
. . 3
| |
| 2 | brfae.4 |
. . 3
| |
| 3 | simpl 473 |
. . . . . . 7
| |
| 4 | 3 | eleq1d 2686 |
. . . . . 6
|
| 5 | simpr 477 |
. . . . . . 7
| |
| 6 | 5 | eleq1d 2686 |
. . . . . 6
|
| 7 | 4, 6 | anbi12d 747 |
. . . . 5
|
| 8 | 3 | fveq1d 6193 |
. . . . . . . 8
|
| 9 | 5 | fveq1d 6193 |
. . . . . . . 8
|
| 10 | 8, 9 | breq12d 4666 |
. . . . . . 7
|
| 11 | 10 | rabbidv 3189 |
. . . . . 6
|
| 12 | 11 | breq1d 4663 |
. . . . 5
|
| 13 | 7, 12 | anbi12d 747 |
. . . 4
|
| 14 | eqid 2622 |
. . . 4
| |
| 15 | 13, 14 | brabga 4989 |
. . 3
|
| 16 | 1, 2, 15 | syl2anc 693 |
. 2
|
| 17 | brfae.1 |
. . . 4
| |
| 18 | brfae.2 |
. . . 4
| |
| 19 | faeval 30309 |
. . . 4
| |
| 20 | 17, 18, 19 | syl2anc 693 |
. . 3
|
| 21 | 20 | breqd 4664 |
. 2
|
| 22 | brfae.0 |
. . . . . 6
| |
| 23 | 22 | oveq1i 6660 |
. . . . 5
|
| 24 | 1, 23 | syl6eleqr 2712 |
. . . 4
|
| 25 | 2, 23 | syl6eleqr 2712 |
. . . 4
|
| 26 | 24, 25 | jca 554 |
. . 3
|
| 27 | 26 | biantrurd 529 |
. 2
|
| 28 | 16, 21, 27 | 3bitr4d 300 |
1
|
| Colors of variables: wff setvar class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1722 ax-4 1737 ax-5 1839 ax-6 1888 ax-7 1935 ax-8 1992 ax-9 1999 ax-10 2019 ax-11 2034 ax-12 2047 ax-13 2246 ax-ext 2602 ax-sep 4781 ax-nul 4789 ax-pow 4843 ax-pr 4906 ax-un 6949 |
| This theorem depends on definitions: df-bi 197 df-or 385 df-an 386 df-3an 1039 df-tru 1486 df-ex 1705 df-nf 1710 df-sb 1881 df-eu 2474 df-mo 2475 df-clab 2609 df-cleq 2615 df-clel 2618 df-nfc 2753 df-ral 2917 df-rex 2918 df-rab 2921 df-v 3202 df-sbc 3436 df-dif 3577 df-un 3579 df-in 3581 df-ss 3588 df-nul 3916 df-if 4087 df-pw 4160 df-sn 4178 df-pr 4180 df-op 4184 df-uni 4437 df-br 4654 df-opab 4713 df-id 5024 df-xp 5120 df-rel 5121 df-cnv 5122 df-co 5123 df-dm 5124 df-iota 5851 df-fun 5890 df-fv 5896 df-ov 6653 df-oprab 6654 df-mpt2 6655 df-fae 30308 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |