MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  canthwdom Structured version   Visualization version   Unicode version

Theorem canthwdom 8484
Description: Cantor's Theorem, stated using weak dominance (this is actually a stronger statement than canth2 8113, equivalent to canth 6608). (Contributed by Mario Carneiro, 15-May-2015.)
Assertion
Ref Expression
canthwdom  |-  -.  ~P A  ~<_*  A

Proof of Theorem canthwdom
Dummy variables  x  f are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 0elpw 4834 . . . . 5  |-  (/)  e.  ~P A
2 ne0i 3921 . . . . 5  |-  ( (/)  e.  ~P A  ->  ~P A  =/=  (/) )
31, 2mp1i 13 . . . 4  |-  ( ~P A  ~<_*  A  ->  ~P A  =/=  (/) )
4 brwdomn0 8474 . . . 4  |-  ( ~P A  =/=  (/)  ->  ( ~P A  ~<_*  A  <->  E. f  f : A -onto-> ~P A ) )
53, 4syl 17 . . 3  |-  ( ~P A  ~<_*  A  ->  ( ~P A  ~<_*  A  <->  E. f  f : A -onto-> ~P A ) )
65ibi 256 . 2  |-  ( ~P A  ~<_*  A  ->  E. f 
f : A -onto-> ~P A )
7 relwdom 8471 . . . . 5  |-  Rel  ~<_*
87brrelex2i 5159 . . . 4  |-  ( ~P A  ~<_*  A  ->  A  e.  _V )
9 foeq2 6112 . . . . . . 7  |-  ( x  =  A  ->  (
f : x -onto-> ~P x  <->  f : A -onto-> ~P x ) )
10 pweq 4161 . . . . . . . 8  |-  ( x  =  A  ->  ~P x  =  ~P A
)
11 foeq3 6113 . . . . . . . 8  |-  ( ~P x  =  ~P A  ->  ( f : A -onto-> ~P x  <->  f : A -onto-> ~P A ) )
1210, 11syl 17 . . . . . . 7  |-  ( x  =  A  ->  (
f : A -onto-> ~P x 
<->  f : A -onto-> ~P A ) )
139, 12bitrd 268 . . . . . 6  |-  ( x  =  A  ->  (
f : x -onto-> ~P x  <->  f : A -onto-> ~P A ) )
1413notbid 308 . . . . 5  |-  ( x  =  A  ->  ( -.  f : x -onto-> ~P x  <->  -.  f : A -onto-> ~P A ) )
15 vex 3203 . . . . . 6  |-  x  e. 
_V
1615canth 6608 . . . . 5  |-  -.  f : x -onto-> ~P x
1714, 16vtoclg 3266 . . . 4  |-  ( A  e.  _V  ->  -.  f : A -onto-> ~P A
)
188, 17syl 17 . . 3  |-  ( ~P A  ~<_*  A  ->  -.  f : A -onto-> ~P A )
1918nexdv 1864 . 2  |-  ( ~P A  ~<_*  A  ->  -.  E. f 
f : A -onto-> ~P A )
206, 19pm2.65i 185 1  |-  -.  ~P A  ~<_*  A
Colors of variables: wff setvar class
Syntax hints:   -. wn 3    <-> wb 196    = wceq 1483   E.wex 1704    e. wcel 1990    =/= wne 2794   _Vcvv 3200   (/)c0 3915   ~Pcpw 4158   class class class wbr 4653   -onto->wfo 5886    ~<_* cwdom 8462
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-sep 4781  ax-nul 4789  ax-pr 4906  ax-un 6949
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-ral 2917  df-rex 2918  df-rab 2921  df-v 3202  df-sbc 3436  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-op 4184  df-uni 4437  df-br 4654  df-opab 4713  df-mpt 4730  df-id 5024  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-fo 5894  df-fv 5896  df-wdom 8464
This theorem is referenced by:  pwcdadom  9038
  Copyright terms: Public domain W3C validator