MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  caofinvl Structured version   Visualization version   Unicode version

Theorem caofinvl 6924
Description: Transfer a left inverse law to the function operation. (Contributed by NM, 22-Oct-2014.)
Hypotheses
Ref Expression
caofref.1  |-  ( ph  ->  A  e.  V )
caofref.2  |-  ( ph  ->  F : A --> S )
caofinv.3  |-  ( ph  ->  B  e.  W )
caofinv.4  |-  ( ph  ->  N : S --> S )
caofinv.5  |-  ( ph  ->  G  =  ( v  e.  A  |->  ( N `
 ( F `  v ) ) ) )
caofinvl.6  |-  ( (
ph  /\  x  e.  S )  ->  (
( N `  x
) R x )  =  B )
Assertion
Ref Expression
caofinvl  |-  ( ph  ->  ( G  oF R F )  =  ( A  X.  { B } ) )
Distinct variable groups:    x, B    x, F    x, G    ph, x    x, R    x, S    v, A    v, F, x    x, N, v    v, S    ph, v
Allowed substitution hints:    A( x)    B( v)    R( v)    G( v)    V( x, v)    W( x, v)

Proof of Theorem caofinvl
Dummy variable  w is distinct from all other variables.
StepHypRef Expression
1 caofref.1 . . . 4  |-  ( ph  ->  A  e.  V )
2 caofinv.4 . . . . . . . . 9  |-  ( ph  ->  N : S --> S )
32adantr 481 . . . . . . . 8  |-  ( (
ph  /\  v  e.  A )  ->  N : S --> S )
4 caofref.2 . . . . . . . . 9  |-  ( ph  ->  F : A --> S )
54ffvelrnda 6359 . . . . . . . 8  |-  ( (
ph  /\  v  e.  A )  ->  ( F `  v )  e.  S )
63, 5ffvelrnd 6360 . . . . . . 7  |-  ( (
ph  /\  v  e.  A )  ->  ( N `  ( F `  v ) )  e.  S )
7 eqid 2622 . . . . . . 7  |-  ( v  e.  A  |->  ( N `
 ( F `  v ) ) )  =  ( v  e.  A  |->  ( N `  ( F `  v ) ) )
86, 7fmptd 6385 . . . . . 6  |-  ( ph  ->  ( v  e.  A  |->  ( N `  ( F `  v )
) ) : A --> S )
9 caofinv.5 . . . . . . 7  |-  ( ph  ->  G  =  ( v  e.  A  |->  ( N `
 ( F `  v ) ) ) )
109feq1d 6030 . . . . . 6  |-  ( ph  ->  ( G : A --> S 
<->  ( v  e.  A  |->  ( N `  ( F `  v )
) ) : A --> S ) )
118, 10mpbird 247 . . . . 5  |-  ( ph  ->  G : A --> S )
1211ffvelrnda 6359 . . . 4  |-  ( (
ph  /\  w  e.  A )  ->  ( G `  w )  e.  S )
134ffvelrnda 6359 . . . 4  |-  ( (
ph  /\  w  e.  A )  ->  ( F `  w )  e.  S )
14 fvex 6201 . . . . . . 7  |-  ( N `
 ( F `  v ) )  e. 
_V
1514, 7fnmpti 6022 . . . . . 6  |-  ( v  e.  A  |->  ( N `
 ( F `  v ) ) )  Fn  A
169fneq1d 5981 . . . . . 6  |-  ( ph  ->  ( G  Fn  A  <->  ( v  e.  A  |->  ( N `  ( F `
 v ) ) )  Fn  A ) )
1715, 16mpbiri 248 . . . . 5  |-  ( ph  ->  G  Fn  A )
18 dffn5 6241 . . . . 5  |-  ( G  Fn  A  <->  G  =  ( w  e.  A  |->  ( G `  w
) ) )
1917, 18sylib 208 . . . 4  |-  ( ph  ->  G  =  ( w  e.  A  |->  ( G `
 w ) ) )
204feqmptd 6249 . . . 4  |-  ( ph  ->  F  =  ( w  e.  A  |->  ( F `
 w ) ) )
211, 12, 13, 19, 20offval2 6914 . . 3  |-  ( ph  ->  ( G  oF R F )  =  ( w  e.  A  |->  ( ( G `  w ) R ( F `  w ) ) ) )
229fveq1d 6193 . . . . . . 7  |-  ( ph  ->  ( G `  w
)  =  ( ( v  e.  A  |->  ( N `  ( F `
 v ) ) ) `  w ) )
23 fveq2 6191 . . . . . . . . 9  |-  ( v  =  w  ->  ( F `  v )  =  ( F `  w ) )
2423fveq2d 6195 . . . . . . . 8  |-  ( v  =  w  ->  ( N `  ( F `  v ) )  =  ( N `  ( F `  w )
) )
25 fvex 6201 . . . . . . . 8  |-  ( N `
 ( F `  w ) )  e. 
_V
2624, 7, 25fvmpt 6282 . . . . . . 7  |-  ( w  e.  A  ->  (
( v  e.  A  |->  ( N `  ( F `  v )
) ) `  w
)  =  ( N `
 ( F `  w ) ) )
2722, 26sylan9eq 2676 . . . . . 6  |-  ( (
ph  /\  w  e.  A )  ->  ( G `  w )  =  ( N `  ( F `  w ) ) )
2827oveq1d 6665 . . . . 5  |-  ( (
ph  /\  w  e.  A )  ->  (
( G `  w
) R ( F `
 w ) )  =  ( ( N `
 ( F `  w ) ) R ( F `  w
) ) )
29 caofinvl.6 . . . . . . . 8  |-  ( (
ph  /\  x  e.  S )  ->  (
( N `  x
) R x )  =  B )
3029ralrimiva 2966 . . . . . . 7  |-  ( ph  ->  A. x  e.  S  ( ( N `  x ) R x )  =  B )
3130adantr 481 . . . . . 6  |-  ( (
ph  /\  w  e.  A )  ->  A. x  e.  S  ( ( N `  x ) R x )  =  B )
32 fveq2 6191 . . . . . . . . 9  |-  ( x  =  ( F `  w )  ->  ( N `  x )  =  ( N `  ( F `  w ) ) )
33 id 22 . . . . . . . . 9  |-  ( x  =  ( F `  w )  ->  x  =  ( F `  w ) )
3432, 33oveq12d 6668 . . . . . . . 8  |-  ( x  =  ( F `  w )  ->  (
( N `  x
) R x )  =  ( ( N `
 ( F `  w ) ) R ( F `  w
) ) )
3534eqeq1d 2624 . . . . . . 7  |-  ( x  =  ( F `  w )  ->  (
( ( N `  x ) R x )  =  B  <->  ( ( N `  ( F `  w ) ) R ( F `  w
) )  =  B ) )
3635rspcva 3307 . . . . . 6  |-  ( ( ( F `  w
)  e.  S  /\  A. x  e.  S  ( ( N `  x
) R x )  =  B )  -> 
( ( N `  ( F `  w ) ) R ( F `
 w ) )  =  B )
3713, 31, 36syl2anc 693 . . . . 5  |-  ( (
ph  /\  w  e.  A )  ->  (
( N `  ( F `  w )
) R ( F `
 w ) )  =  B )
3828, 37eqtrd 2656 . . . 4  |-  ( (
ph  /\  w  e.  A )  ->  (
( G `  w
) R ( F `
 w ) )  =  B )
3938mpteq2dva 4744 . . 3  |-  ( ph  ->  ( w  e.  A  |->  ( ( G `  w ) R ( F `  w ) ) )  =  ( w  e.  A  |->  B ) )
4021, 39eqtrd 2656 . 2  |-  ( ph  ->  ( G  oF R F )  =  ( w  e.  A  |->  B ) )
41 fconstmpt 5163 . 2  |-  ( A  X.  { B }
)  =  ( w  e.  A  |->  B )
4240, 41syl6eqr 2674 1  |-  ( ph  ->  ( G  oF R F )  =  ( A  X.  { B } ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    /\ wa 384    = wceq 1483    e. wcel 1990   A.wral 2912   {csn 4177    |-> cmpt 4729    X. cxp 5112    Fn wfn 5883   -->wf 5884   ` cfv 5888  (class class class)co 6650    oFcof 6895
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-ral 2917  df-rex 2918  df-reu 2919  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-nul 3916  df-if 4087  df-sn 4178  df-pr 4180  df-op 4184  df-uni 4437  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-id 5024  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-of 6897
This theorem is referenced by:  grpvlinv  20201  lflnegl  34363
  Copyright terms: Public domain W3C validator