MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  caofinvl Structured version   Visualization version   GIF version

Theorem caofinvl 6924
Description: Transfer a left inverse law to the function operation. (Contributed by NM, 22-Oct-2014.)
Hypotheses
Ref Expression
caofref.1 (𝜑𝐴𝑉)
caofref.2 (𝜑𝐹:𝐴𝑆)
caofinv.3 (𝜑𝐵𝑊)
caofinv.4 (𝜑𝑁:𝑆𝑆)
caofinv.5 (𝜑𝐺 = (𝑣𝐴 ↦ (𝑁‘(𝐹𝑣))))
caofinvl.6 ((𝜑𝑥𝑆) → ((𝑁𝑥)𝑅𝑥) = 𝐵)
Assertion
Ref Expression
caofinvl (𝜑 → (𝐺𝑓 𝑅𝐹) = (𝐴 × {𝐵}))
Distinct variable groups:   𝑥,𝐵   𝑥,𝐹   𝑥,𝐺   𝜑,𝑥   𝑥,𝑅   𝑥,𝑆   𝑣,𝐴   𝑣,𝐹,𝑥   𝑥,𝑁,𝑣   𝑣,𝑆   𝜑,𝑣
Allowed substitution hints:   𝐴(𝑥)   𝐵(𝑣)   𝑅(𝑣)   𝐺(𝑣)   𝑉(𝑥,𝑣)   𝑊(𝑥,𝑣)

Proof of Theorem caofinvl
Dummy variable 𝑤 is distinct from all other variables.
StepHypRef Expression
1 caofref.1 . . . 4 (𝜑𝐴𝑉)
2 caofinv.4 . . . . . . . . 9 (𝜑𝑁:𝑆𝑆)
32adantr 481 . . . . . . . 8 ((𝜑𝑣𝐴) → 𝑁:𝑆𝑆)
4 caofref.2 . . . . . . . . 9 (𝜑𝐹:𝐴𝑆)
54ffvelrnda 6359 . . . . . . . 8 ((𝜑𝑣𝐴) → (𝐹𝑣) ∈ 𝑆)
63, 5ffvelrnd 6360 . . . . . . 7 ((𝜑𝑣𝐴) → (𝑁‘(𝐹𝑣)) ∈ 𝑆)
7 eqid 2622 . . . . . . 7 (𝑣𝐴 ↦ (𝑁‘(𝐹𝑣))) = (𝑣𝐴 ↦ (𝑁‘(𝐹𝑣)))
86, 7fmptd 6385 . . . . . 6 (𝜑 → (𝑣𝐴 ↦ (𝑁‘(𝐹𝑣))):𝐴𝑆)
9 caofinv.5 . . . . . . 7 (𝜑𝐺 = (𝑣𝐴 ↦ (𝑁‘(𝐹𝑣))))
109feq1d 6030 . . . . . 6 (𝜑 → (𝐺:𝐴𝑆 ↔ (𝑣𝐴 ↦ (𝑁‘(𝐹𝑣))):𝐴𝑆))
118, 10mpbird 247 . . . . 5 (𝜑𝐺:𝐴𝑆)
1211ffvelrnda 6359 . . . 4 ((𝜑𝑤𝐴) → (𝐺𝑤) ∈ 𝑆)
134ffvelrnda 6359 . . . 4 ((𝜑𝑤𝐴) → (𝐹𝑤) ∈ 𝑆)
14 fvex 6201 . . . . . . 7 (𝑁‘(𝐹𝑣)) ∈ V
1514, 7fnmpti 6022 . . . . . 6 (𝑣𝐴 ↦ (𝑁‘(𝐹𝑣))) Fn 𝐴
169fneq1d 5981 . . . . . 6 (𝜑 → (𝐺 Fn 𝐴 ↔ (𝑣𝐴 ↦ (𝑁‘(𝐹𝑣))) Fn 𝐴))
1715, 16mpbiri 248 . . . . 5 (𝜑𝐺 Fn 𝐴)
18 dffn5 6241 . . . . 5 (𝐺 Fn 𝐴𝐺 = (𝑤𝐴 ↦ (𝐺𝑤)))
1917, 18sylib 208 . . . 4 (𝜑𝐺 = (𝑤𝐴 ↦ (𝐺𝑤)))
204feqmptd 6249 . . . 4 (𝜑𝐹 = (𝑤𝐴 ↦ (𝐹𝑤)))
211, 12, 13, 19, 20offval2 6914 . . 3 (𝜑 → (𝐺𝑓 𝑅𝐹) = (𝑤𝐴 ↦ ((𝐺𝑤)𝑅(𝐹𝑤))))
229fveq1d 6193 . . . . . . 7 (𝜑 → (𝐺𝑤) = ((𝑣𝐴 ↦ (𝑁‘(𝐹𝑣)))‘𝑤))
23 fveq2 6191 . . . . . . . . 9 (𝑣 = 𝑤 → (𝐹𝑣) = (𝐹𝑤))
2423fveq2d 6195 . . . . . . . 8 (𝑣 = 𝑤 → (𝑁‘(𝐹𝑣)) = (𝑁‘(𝐹𝑤)))
25 fvex 6201 . . . . . . . 8 (𝑁‘(𝐹𝑤)) ∈ V
2624, 7, 25fvmpt 6282 . . . . . . 7 (𝑤𝐴 → ((𝑣𝐴 ↦ (𝑁‘(𝐹𝑣)))‘𝑤) = (𝑁‘(𝐹𝑤)))
2722, 26sylan9eq 2676 . . . . . 6 ((𝜑𝑤𝐴) → (𝐺𝑤) = (𝑁‘(𝐹𝑤)))
2827oveq1d 6665 . . . . 5 ((𝜑𝑤𝐴) → ((𝐺𝑤)𝑅(𝐹𝑤)) = ((𝑁‘(𝐹𝑤))𝑅(𝐹𝑤)))
29 caofinvl.6 . . . . . . . 8 ((𝜑𝑥𝑆) → ((𝑁𝑥)𝑅𝑥) = 𝐵)
3029ralrimiva 2966 . . . . . . 7 (𝜑 → ∀𝑥𝑆 ((𝑁𝑥)𝑅𝑥) = 𝐵)
3130adantr 481 . . . . . 6 ((𝜑𝑤𝐴) → ∀𝑥𝑆 ((𝑁𝑥)𝑅𝑥) = 𝐵)
32 fveq2 6191 . . . . . . . . 9 (𝑥 = (𝐹𝑤) → (𝑁𝑥) = (𝑁‘(𝐹𝑤)))
33 id 22 . . . . . . . . 9 (𝑥 = (𝐹𝑤) → 𝑥 = (𝐹𝑤))
3432, 33oveq12d 6668 . . . . . . . 8 (𝑥 = (𝐹𝑤) → ((𝑁𝑥)𝑅𝑥) = ((𝑁‘(𝐹𝑤))𝑅(𝐹𝑤)))
3534eqeq1d 2624 . . . . . . 7 (𝑥 = (𝐹𝑤) → (((𝑁𝑥)𝑅𝑥) = 𝐵 ↔ ((𝑁‘(𝐹𝑤))𝑅(𝐹𝑤)) = 𝐵))
3635rspcva 3307 . . . . . 6 (((𝐹𝑤) ∈ 𝑆 ∧ ∀𝑥𝑆 ((𝑁𝑥)𝑅𝑥) = 𝐵) → ((𝑁‘(𝐹𝑤))𝑅(𝐹𝑤)) = 𝐵)
3713, 31, 36syl2anc 693 . . . . 5 ((𝜑𝑤𝐴) → ((𝑁‘(𝐹𝑤))𝑅(𝐹𝑤)) = 𝐵)
3828, 37eqtrd 2656 . . . 4 ((𝜑𝑤𝐴) → ((𝐺𝑤)𝑅(𝐹𝑤)) = 𝐵)
3938mpteq2dva 4744 . . 3 (𝜑 → (𝑤𝐴 ↦ ((𝐺𝑤)𝑅(𝐹𝑤))) = (𝑤𝐴𝐵))
4021, 39eqtrd 2656 . 2 (𝜑 → (𝐺𝑓 𝑅𝐹) = (𝑤𝐴𝐵))
41 fconstmpt 5163 . 2 (𝐴 × {𝐵}) = (𝑤𝐴𝐵)
4240, 41syl6eqr 2674 1 (𝜑 → (𝐺𝑓 𝑅𝐹) = (𝐴 × {𝐵}))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 384   = wceq 1483  wcel 1990  wral 2912  {csn 4177  cmpt 4729   × cxp 5112   Fn wfn 5883  wf 5884  cfv 5888  (class class class)co 6650  𝑓 cof 6895
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-ral 2917  df-rex 2918  df-reu 2919  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-nul 3916  df-if 4087  df-sn 4178  df-pr 4180  df-op 4184  df-uni 4437  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-id 5024  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-of 6897
This theorem is referenced by:  grpvlinv  20201  lflnegl  34363
  Copyright terms: Public domain W3C validator