MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  grpvlinv Structured version   Visualization version   Unicode version

Theorem grpvlinv 20201
Description: Tuple-wise left inverse in groups. (Contributed by Stefan O'Rear, 5-Sep-2015.)
Hypotheses
Ref Expression
grpvlinv.b  |-  B  =  ( Base `  G
)
grpvlinv.p  |-  .+  =  ( +g  `  G )
grpvlinv.n  |-  N  =  ( invg `  G )
grpvlinv.z  |-  .0.  =  ( 0g `  G )
Assertion
Ref Expression
grpvlinv  |-  ( ( G  e.  Grp  /\  X  e.  ( B  ^m  I ) )  -> 
( ( N  o.  X )  oF  .+  X )  =  ( I  X.  {  .0.  } ) )

Proof of Theorem grpvlinv
Dummy variables  x  y are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 elmapex 7878 . . . 4  |-  ( X  e.  ( B  ^m  I )  ->  ( B  e.  _V  /\  I  e.  _V ) )
21simprd 479 . . 3  |-  ( X  e.  ( B  ^m  I )  ->  I  e.  _V )
32adantl 482 . 2  |-  ( ( G  e.  Grp  /\  X  e.  ( B  ^m  I ) )  ->  I  e.  _V )
4 elmapi 7879 . . 3  |-  ( X  e.  ( B  ^m  I )  ->  X : I --> B )
54adantl 482 . 2  |-  ( ( G  e.  Grp  /\  X  e.  ( B  ^m  I ) )  ->  X : I --> B )
6 grpvlinv.b . . . 4  |-  B  =  ( Base `  G
)
7 grpvlinv.z . . . 4  |-  .0.  =  ( 0g `  G )
86, 7grpidcl 17450 . . 3  |-  ( G  e.  Grp  ->  .0.  e.  B )
98adantr 481 . 2  |-  ( ( G  e.  Grp  /\  X  e.  ( B  ^m  I ) )  ->  .0.  e.  B )
10 grpvlinv.n . . . 4  |-  N  =  ( invg `  G )
116, 10grpinvf 17466 . . 3  |-  ( G  e.  Grp  ->  N : B --> B )
1211adantr 481 . 2  |-  ( ( G  e.  Grp  /\  X  e.  ( B  ^m  I ) )  ->  N : B --> B )
13 fcompt 6400 . . 3  |-  ( ( N : B --> B  /\  X : I --> B )  ->  ( N  o.  X )  =  ( x  e.  I  |->  ( N `  ( X `
 x ) ) ) )
1411, 4, 13syl2an 494 . 2  |-  ( ( G  e.  Grp  /\  X  e.  ( B  ^m  I ) )  -> 
( N  o.  X
)  =  ( x  e.  I  |->  ( N `
 ( X `  x ) ) ) )
15 grpvlinv.p . . . 4  |-  .+  =  ( +g  `  G )
166, 15, 7, 10grplinv 17468 . . 3  |-  ( ( G  e.  Grp  /\  y  e.  B )  ->  ( ( N `  y )  .+  y
)  =  .0.  )
1716adantlr 751 . 2  |-  ( ( ( G  e.  Grp  /\  X  e.  ( B  ^m  I ) )  /\  y  e.  B
)  ->  ( ( N `  y )  .+  y )  =  .0.  )
183, 5, 9, 12, 14, 17caofinvl 6924 1  |-  ( ( G  e.  Grp  /\  X  e.  ( B  ^m  I ) )  -> 
( ( N  o.  X )  oF  .+  X )  =  ( I  X.  {  .0.  } ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    /\ wa 384    = wceq 1483    e. wcel 1990   _Vcvv 3200   {csn 4177    |-> cmpt 4729    X. cxp 5112    o. ccom 5118   -->wf 5884   ` cfv 5888  (class class class)co 6650    oFcof 6895    ^m cmap 7857   Basecbs 15857   +g cplusg 15941   0gc0g 16100   Grpcgrp 17422   invgcminusg 17423
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-ral 2917  df-rex 2918  df-reu 2919  df-rmo 2920  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-op 4184  df-uni 4437  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-id 5024  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-riota 6611  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-of 6897  df-1st 7168  df-2nd 7169  df-map 7859  df-0g 16102  df-mgm 17242  df-sgrp 17284  df-mnd 17295  df-grp 17425  df-minusg 17426
This theorem is referenced by:  mendring  37762
  Copyright terms: Public domain W3C validator