MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  cbvralf Structured version   Visualization version   Unicode version

Theorem cbvralf 3165
Description: Rule used to change bound variables, using implicit substitution. (Contributed by NM, 7-Mar-2004.) (Revised by Mario Carneiro, 9-Oct-2016.)
Hypotheses
Ref Expression
cbvralf.1  |-  F/_ x A
cbvralf.2  |-  F/_ y A
cbvralf.3  |-  F/ y
ph
cbvralf.4  |-  F/ x ps
cbvralf.5  |-  ( x  =  y  ->  ( ph 
<->  ps ) )
Assertion
Ref Expression
cbvralf  |-  ( A. x  e.  A  ph  <->  A. y  e.  A  ps )

Proof of Theorem cbvralf
Dummy variable  z is distinct from all other variables.
StepHypRef Expression
1 nfv 1843 . . . 4  |-  F/ z ( x  e.  A  ->  ph )
2 cbvralf.1 . . . . . 6  |-  F/_ x A
32nfcri 2758 . . . . 5  |-  F/ x  z  e.  A
4 nfs1v 2437 . . . . 5  |-  F/ x [ z  /  x ] ph
53, 4nfim 1825 . . . 4  |-  F/ x
( z  e.  A  ->  [ z  /  x ] ph )
6 eleq1 2689 . . . . 5  |-  ( x  =  z  ->  (
x  e.  A  <->  z  e.  A ) )
7 sbequ12 2111 . . . . 5  |-  ( x  =  z  ->  ( ph 
<->  [ z  /  x ] ph ) )
86, 7imbi12d 334 . . . 4  |-  ( x  =  z  ->  (
( x  e.  A  ->  ph )  <->  ( z  e.  A  ->  [ z  /  x ] ph ) ) )
91, 5, 8cbval 2271 . . 3  |-  ( A. x ( x  e.  A  ->  ph )  <->  A. z
( z  e.  A  ->  [ z  /  x ] ph ) )
10 cbvralf.2 . . . . . 6  |-  F/_ y A
1110nfcri 2758 . . . . 5  |-  F/ y  z  e.  A
12 cbvralf.3 . . . . . 6  |-  F/ y
ph
1312nfsb 2440 . . . . 5  |-  F/ y [ z  /  x ] ph
1411, 13nfim 1825 . . . 4  |-  F/ y ( z  e.  A  ->  [ z  /  x ] ph )
15 nfv 1843 . . . 4  |-  F/ z ( y  e.  A  ->  ps )
16 eleq1 2689 . . . . 5  |-  ( z  =  y  ->  (
z  e.  A  <->  y  e.  A ) )
17 sbequ 2376 . . . . . 6  |-  ( z  =  y  ->  ( [ z  /  x ] ph  <->  [ y  /  x ] ph ) )
18 cbvralf.4 . . . . . . 7  |-  F/ x ps
19 cbvralf.5 . . . . . . 7  |-  ( x  =  y  ->  ( ph 
<->  ps ) )
2018, 19sbie 2408 . . . . . 6  |-  ( [ y  /  x ] ph 
<->  ps )
2117, 20syl6bb 276 . . . . 5  |-  ( z  =  y  ->  ( [ z  /  x ] ph  <->  ps ) )
2216, 21imbi12d 334 . . . 4  |-  ( z  =  y  ->  (
( z  e.  A  ->  [ z  /  x ] ph )  <->  ( y  e.  A  ->  ps )
) )
2314, 15, 22cbval 2271 . . 3  |-  ( A. z ( z  e.  A  ->  [ z  /  x ] ph )  <->  A. y ( y  e.  A  ->  ps )
)
249, 23bitri 264 . 2  |-  ( A. x ( x  e.  A  ->  ph )  <->  A. y
( y  e.  A  ->  ps ) )
25 df-ral 2917 . 2  |-  ( A. x  e.  A  ph  <->  A. x
( x  e.  A  ->  ph ) )
26 df-ral 2917 . 2  |-  ( A. y  e.  A  ps  <->  A. y ( y  e.  A  ->  ps )
)
2724, 25, 263bitr4i 292 1  |-  ( A. x  e.  A  ph  <->  A. y  e.  A  ps )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 196   A.wal 1481   F/wnf 1708   [wsb 1880    e. wcel 1990   F/_wnfc 2751   A.wral 2912
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ral 2917
This theorem is referenced by:  cbvrexf  3166  cbvral  3167  reusv2lem4  4872  reusv2  4874  ffnfvf  6389  nnwof  11754  nnindf  29565  scottexf  33976  scott0f  33977  evth2f  39174  evthf  39186  supxrleubrnmptf  39680  stoweidlem14  40231  stoweidlem28  40245  stoweidlem59  40276
  Copyright terms: Public domain W3C validator