| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > cbvralf | Structured version Visualization version Unicode version | ||
| Description: Rule used to change bound variables, using implicit substitution. (Contributed by NM, 7-Mar-2004.) (Revised by Mario Carneiro, 9-Oct-2016.) |
| Ref | Expression |
|---|---|
| cbvralf.1 |
|
| cbvralf.2 |
|
| cbvralf.3 |
|
| cbvralf.4 |
|
| cbvralf.5 |
|
| Ref | Expression |
|---|---|
| cbvralf |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | nfv 1843 |
. . . 4
| |
| 2 | cbvralf.1 |
. . . . . 6
| |
| 3 | 2 | nfcri 2758 |
. . . . 5
|
| 4 | nfs1v 2437 |
. . . . 5
| |
| 5 | 3, 4 | nfim 1825 |
. . . 4
|
| 6 | eleq1 2689 |
. . . . 5
| |
| 7 | sbequ12 2111 |
. . . . 5
| |
| 8 | 6, 7 | imbi12d 334 |
. . . 4
|
| 9 | 1, 5, 8 | cbval 2271 |
. . 3
|
| 10 | cbvralf.2 |
. . . . . 6
| |
| 11 | 10 | nfcri 2758 |
. . . . 5
|
| 12 | cbvralf.3 |
. . . . . 6
| |
| 13 | 12 | nfsb 2440 |
. . . . 5
|
| 14 | 11, 13 | nfim 1825 |
. . . 4
|
| 15 | nfv 1843 |
. . . 4
| |
| 16 | eleq1 2689 |
. . . . 5
| |
| 17 | sbequ 2376 |
. . . . . 6
| |
| 18 | cbvralf.4 |
. . . . . . 7
| |
| 19 | cbvralf.5 |
. . . . . . 7
| |
| 20 | 18, 19 | sbie 2408 |
. . . . . 6
|
| 21 | 17, 20 | syl6bb 276 |
. . . . 5
|
| 22 | 16, 21 | imbi12d 334 |
. . . 4
|
| 23 | 14, 15, 22 | cbval 2271 |
. . 3
|
| 24 | 9, 23 | bitri 264 |
. 2
|
| 25 | df-ral 2917 |
. 2
| |
| 26 | df-ral 2917 |
. 2
| |
| 27 | 24, 25, 26 | 3bitr4i 292 |
1
|
| Colors of variables: wff setvar class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1722 ax-4 1737 ax-5 1839 ax-6 1888 ax-7 1935 ax-9 1999 ax-10 2019 ax-11 2034 ax-12 2047 ax-13 2246 ax-ext 2602 |
| This theorem depends on definitions: df-bi 197 df-or 385 df-an 386 df-tru 1486 df-ex 1705 df-nf 1710 df-sb 1881 df-cleq 2615 df-clel 2618 df-nfc 2753 df-ral 2917 |
| This theorem is referenced by: cbvrexf 3166 cbvral 3167 reusv2lem4 4872 reusv2 4874 ffnfvf 6389 nnwof 11754 nnindf 29565 scottexf 33976 scott0f 33977 evth2f 39174 evthf 39186 supxrleubrnmptf 39680 stoweidlem14 40231 stoweidlem28 40245 stoweidlem59 40276 |
| Copyright terms: Public domain | W3C validator |